Lagautriere Thomas, Bashiri Ghader, Paterson Neil G, Berney Michael, Cook Gregory M, Baker Edward N
Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.
Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
Acta Crystallogr D Biol Crystallogr. 2014 Apr;70(Pt 4):968-80. doi: 10.1107/S1399004713034391. Epub 2014 Mar 19.
The proline-utilization pathway in Mycobacterium tuberculosis (Mtb) has recently been identified as an important factor in Mtb persistence in vivo, suggesting that this pathway could be a valuable therapeutic target against tuberculosis (TB). In Mtb, two distinct enzymes perform the conversion of proline into glutamate: the first step is the oxidation of proline into Δ(1)-pyrroline-5-carboxylic acid (P5C) by the flavoenzyme proline dehydrogenase (PruB), and the second reaction involves converting the tautomeric form of P5C (glutamate-γ-semialdehyde) into glutamate using the NAD(+)-dependent Δ(1)-pyrroline-5-carboxylic dehydrogenase (PruA). Here, the three-dimensional structures of Mtb-PruA, determined by X-ray crystallography, in the apo state and in complex with NAD(+) are described at 2.5 and 2.1 Å resolution, respectively. The structure reveals a conserved NAD(+)-binding mode, common to other related enzymes. Species-specific conformational differences in the active site, however, linked to changes in the dimer interface, suggest possibilities for selective inhibition of Mtb-PruA despite its reasonably high sequence identity to other PruA enzymes. Using recombinant PruA and PruB, the proline-utilization pathway in Mtb has also been reconstituted in vitro. Functional validation using a novel NMR approach has demonstrated that the PruA and PruB enzymes are together sufficient to convert proline to glutamate, the first such demonstration for monofunctional proline-utilization enzymes.
结核分枝杆菌(Mtb)中的脯氨酸利用途径最近被确定为Mtb在体内持续存在的一个重要因素,这表明该途径可能是抗结核病(TB)的一个有价值的治疗靶点。在Mtb中,两种不同的酶将脯氨酸转化为谷氨酸:第一步是黄素酶脯氨酸脱氢酶(PruB)将脯氨酸氧化为Δ(1)-吡咯啉-5-羧酸(P5C),第二步反应是使用依赖NAD(+)的Δ(1)-吡咯啉-5-羧酸脱氢酶(PruA)将P5C的互变异构形式(谷氨酸-γ-半醛)转化为谷氨酸。在此,分别以2.5 Å和2.1 Å的分辨率描述了通过X射线晶体学确定的处于无辅基状态以及与NAD(+)结合的Mtb-PruA的三维结构。该结构揭示了一种与其他相关酶共有的保守NAD(+)结合模式。然而,活性位点中与二聚体界面变化相关的物种特异性构象差异表明,尽管Mtb-PruA与其他PruA酶具有相当高的序列同一性,但仍有可能对其进行选择性抑制。使用重组PruA和PruB,Mtb中的脯氨酸利用途径也已在体外重建。使用一种新型NMR方法进行的功能验证表明,PruA和PruB酶共同足以将脯氨酸转化为谷氨酸,这是对单功能脯氨酸利用酶的首次此类证明。