Suppr超能文献

用于估计时程数据中具有统计学显著意义的振荡周期的最优实验设计。

Optimal experimental design to estimate statistically significant periods of oscillations in time course data.

作者信息

Mourão Márcio, Satin Leslie, Schnell Santiago

机构信息

Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.

Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.

出版信息

PLoS One. 2014 Apr 3;9(4):e93826. doi: 10.1371/journal.pone.0093826. eCollection 2014.

Abstract

We investigated commonly used methods (Autocorrelation, Enright, and Discrete Fourier Transform) to estimate the periodicity of oscillatory data and determine which method most accurately estimated periods while being least vulnerable to the presence of noise. Both simulated and experimental data were used in the analysis performed. We determined the significance of calculated periods by applying these methods to several random permutations of the data and then calculating the probability of obtaining the period's peak in the corresponding periodograms. Our analysis suggests that the Enright method is the most accurate for estimating the period of oscillatory data. We further show that to accurately estimate the period of oscillatory data, it is necessary that at least five cycles of data are sampled, using at least four data points per cycle. These results suggest that the Enright method should be more widely applied in order to improve the analysis of oscillatory data.

摘要

我们研究了常用方法(自相关法、恩赖特法和离散傅里叶变换法)来估计振荡数据的周期性,并确定哪种方法在最不易受噪声影响的情况下能最准确地估计周期。在进行的分析中使用了模拟数据和实验数据。我们通过将这些方法应用于数据的几种随机排列,然后计算在相应周期图中获得周期峰值的概率,来确定计算出的周期的显著性。我们的分析表明,恩赖特法在估计振荡数据的周期方面最为准确。我们进一步表明,为了准确估计振荡数据的周期,每个周期至少使用四个数据点对至少五个周期的数据进行采样是必要的。这些结果表明,应更广泛地应用恩赖特法以改进对振荡数据的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1249/3974819/894b6d794c52/pone.0093826.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验