Nomura Akihiro, Jones Christopher W
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100 (USA), Fax: (+1) 404-894-2866.
Chemistry. 2014 May 19;20(21):6381-90. doi: 10.1002/chem.201304954. Epub 2014 Apr 3.
Airborne formaldehyde, which is a highly problematic volatile organic compound (VOC) pollutant, is adsorbed by polymeric amine-incorporated silicas (aminosilicas), and the factors that affect the adsorption performance are systematically investigated. Three different types of polymeric amines 1) poly(ethyleneimine) branched (PEIBR); 2) poly(ethyleneimine) linear (PEILI); and 3) poly(allylamine) (PAA) are impregnated into two types of porous silicas [SBA-15 and mesocellular foam (MCF) silicas] with systematic changes of the amine loadings. The adsorption results demonstrate that the adsorption capacity increases along with the amine loading until the polymeric amines completely fill the silica pores. This results in the MCF silica, which has a larger pore volume and hence can accommodate more polymeric amine before completely filling the pore, giving materials that adsorb more formaldehyde, with the largest adsorption capacity, q, of up to 5.7 mmolHCHO g(-1) among the samples studied herein. Of the three different types of polymers, PAA, comprised of 100 % primary amines, showed the highest amine efficiency μ (mmolHCHO/mmolN) for capturing formaldehyde. The chemical structures of the adsorbed formaldehyde are analyzed by (13)C cross-polarization magic-angle spinning (CP-MAS) NMR, and it is demonstrated that the adsorbed formaldehyde is chemically attached to the aminosilica surface, forming hemiaminal and imine species. Because the chemical adsorption of formaldehyde forms covalent bonds, it is not desorbed from the aminosilicas below 130 °C based on temperature-programed-desorption (TPD) analysis. The high formaldehyde-adsorption capacity and stability of the trapped formaldehyde on the amine surface in this study reveal the potential utility of aminosilicas as formaldehyde abatement materials.
空气中的甲醛是一种极具问题的挥发性有机化合物(VOC)污染物,可被含聚合物胺的二氧化硅(氨基二氧化硅)吸附,并且对影响吸附性能的因素进行了系统研究。将三种不同类型的聚合物胺1)支化聚(乙烯亚胺)(PEIBR);2)线性聚(乙烯亚胺)(PEILI);3)聚(烯丙胺)(PAA)浸渍到两种类型的多孔二氧化硅[SBA - 15和介孔泡沫(MCF)二氧化硅]中,并系统改变胺负载量。吸附结果表明,吸附容量随着胺负载量的增加而增加,直到聚合物胺完全填充二氧化硅孔。这使得MCF二氧化硅具有更大的孔体积,因此在完全填充孔之前可以容纳更多的聚合物胺,从而得到吸附更多甲醛的材料,在所研究的样品中,其最大吸附容量q高达5.7 mmolHCHO g⁻¹。在三种不同类型的聚合物中,由100%伯胺组成的PAA对捕获甲醛显示出最高的胺效率μ(mmolHCHO/mmolN)。通过¹³C交叉极化魔角旋转(CP - MAS)核磁共振分析吸附甲醛的化学结构,结果表明吸附的甲醛化学附着在氨基二氧化硅表面,形成半缩醛胺和亚胺物种。由于甲醛的化学吸附形成共价键,根据程序升温脱附(TPD)分析,在130℃以下它不会从氨基二氧化硅上解吸。本研究中甲醛在胺表面的高吸附容量和捕获甲醛的稳定性揭示了氨基二氧化硅作为甲醛减排材料的潜在用途。