Suppr超能文献

用于预测达卡股票市场时机决策的混合机器学习技术。

Hybrid machine learning technique for forecasting Dhaka stock market timing decisions.

作者信息

Banik Shipra, Khodadad Khan A F M, Anwer Mohammad

机构信息

School of Engineering and Computer Science, Independent University, Dhaka 1229, Bangladesh.

出版信息

Comput Intell Neurosci. 2014;2014:318524. doi: 10.1155/2014/318524. Epub 2014 Feb 19.

Abstract

Forecasting stock market has been a difficult job for applied researchers owing to nature of facts which is very noisy and time varying. However, this hypothesis has been featured by several empirical experiential studies and a number of researchers have efficiently applied machine learning techniques to forecast stock market. This paper studied stock prediction for the use of investors. It is always true that investors typically obtain loss because of uncertain investment purposes and unsighted assets. This paper proposes a rough set model, a neural network model, and a hybrid neural network and rough set model to find optimal buy and sell of a share on Dhaka stock exchange. Investigational findings demonstrate that our proposed hybrid model has higher precision than the single rough set model and the neural network model. We believe this paper findings will help stock investors to decide about optimal buy and/or sell time on Dhaka stock exchange.

摘要

由于事实的性质非常嘈杂且随时间变化,预测股票市场对应用研究人员来说一直是一项艰巨的任务。然而,这一假设已在多项实证研究中得到体现,许多研究人员已有效地应用机器学习技术来预测股票市场。本文研究了供投资者使用的股票预测。投资者通常因投资目的不确定和资产盲目而遭受损失,这一点始终是事实。本文提出了一种粗糙集模型、一种神经网络模型以及一种混合神经网络和粗糙集模型,以找出达卡证券交易所股票的最佳买卖时机。调查结果表明,我们提出的混合模型比单一的粗糙集模型和神经网络模型具有更高的精度。我们相信本文的研究结果将有助于股票投资者在达卡证券交易所决定最佳的买卖时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13fe/3950395/db16eb86026e/CIN2014-318524.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验