Suppr超能文献

通过人工智能和向量自回归模型进行事后和事前预测的两种不同观点。

Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting.

作者信息

Aydin Alev Dilek, Caliskan Cavdar Seyma

机构信息

Faculty of Business, Haliç University, 34200 Istanbul, Turkey.

出版信息

Comput Intell Neurosci. 2015;2015:409361. doi: 10.1155/2015/409361. Epub 2015 Oct 13.

Abstract

The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method.

摘要

人工神经网络方法通过多层前馈神经网络(MLFN)得以应用,该方法基于2000年1月至2014年9月土耳其的月度数据,使用不同的宏观经济变量,如美元兑土耳其里拉汇率、黄金价格以及伊斯坦布尔证券交易所(BIST)100指数。向量自回归(VAR)方法也在同一时间段内对相同变量进行了应用。在本研究中,与以往开展的其他研究不同,为构建人工神经网络,使用了ENCOG机器学习框架以及Java编程语言。网络训练采用弹性传播方法进行。将人工神经网络方法获得的事后和事前估计结果与向量自回归计量经济学预测方法得到的结果进行了比较。引人注目的是,我们基于人工神经网络方法的研究结果表明,从2017年10月起土耳其存在金融困境或金融危机的可能性。向量自回归方法得到的结果也支持人工神经网络方法的结果。此外,我们的结果表明,人工神经网络方法比向量自回归方法具有更优越的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac06/4621349/fde698345e34/CIN2015-409361.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验