Suppr超能文献

Phevor 结合了多个生物医学本体,用于在单个个体和小核家庭中准确识别致病等位基因。

Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families.

机构信息

Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.

Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Am J Hum Genet. 2014 Apr 3;94(4):599-610. doi: 10.1016/j.ajhg.2014.03.010.

Abstract

Phevor integrates phenotype, gene function, and disease information with personal genomic data for improved power to identify disease-causing alleles. Phevor works by combining knowledge resident in multiple biomedical ontologies with the outputs of variant-prioritization tools. It does so by using an algorithm that propagates information across and between ontologies. This process enables Phevor to accurately reprioritize potentially damaging alleles identified by variant-prioritization tools in light of gene function, disease, and phenotype knowledge. Phevor is especially useful for single-exome and family-trio-based diagnostic analyses, the most commonly occurring clinical scenarios and ones for which existing personal genome diagnostic tools are most inaccurate and underpowered. Here, we present a series of benchmark analyses illustrating Phevor's performance characteristics. Also presented are three recent Utah Genome Project case studies in which Phevor was used to identify disease-causing alleles. Collectively, these results show that Phevor improves diagnostic accuracy not only for individuals presenting with established disease phenotypes but also for those with previously undescribed and atypical disease presentations. Importantly, Phevor is not limited to known diseases or known disease-causing alleles. As we demonstrate, Phevor can also use latent information in ontologies to discover genes and disease-causing alleles not previously associated with disease.

摘要

Phevor 将表型、基因功能和疾病信息与个人基因组数据相结合,以提高识别致病等位基因的能力。Phevor 通过将多个生物医学本体中的知识与变体优先级工具的输出相结合来实现这一点。它使用一种在本体之间和本体内部传播信息的算法来实现这一点。这一过程使 Phevor 能够根据基因功能、疾病和表型知识,准确地重新确定变体优先级工具识别出的潜在有害等位基因的优先级。Phevor 特别适用于单外显子和基于家系三人组的诊断分析,这是最常见的临床情况,也是现有个人基因组诊断工具最不准确和缺乏效力的情况。在这里,我们提出了一系列基准分析,说明了 Phevor 的性能特点。我们还介绍了三个最近的犹他基因组计划案例研究,其中使用了 Phevor 来识别致病等位基因。这些结果表明,Phevor 不仅可以提高具有已确立疾病表型的个体的诊断准确性,还可以提高以前未描述和非典型疾病表现的个体的诊断准确性。重要的是,Phevor 不仅限于已知疾病或已知的致病等位基因。正如我们所证明的,Phevor 还可以利用本体中的潜在信息来发现以前与疾病无关的基因和致病等位基因。

相似文献

4
eXtasy: variant prioritization by genomic data fusion.
Nat Methods. 2013 Nov;10(11):1083-4. doi: 10.1038/nmeth.2656. Epub 2013 Sep 29.
5
Identification of de novo germline mutations and causal genes for sporadic diseases using trio-based whole-exome/genome sequencing.
Biol Rev Camb Philos Soc. 2018 May;93(2):1014-1031. doi: 10.1111/brv.12383. Epub 2017 Nov 20.
6
Phenotype-driven strategies for exome prioritization of human Mendelian disease genes.
Genome Med. 2015 Jul 30;7(1):81. doi: 10.1186/s13073-015-0199-2. eCollection 2015.
7
Genome-wide analysis of human disease alleles reveals that their locations are correlated in paralogous proteins.
PLoS Comput Biol. 2008 Nov;4(11):e1000218. doi: 10.1371/journal.pcbi.1000218. Epub 2008 Nov 7.
10
Genomic medicine and risk prediction across the disease spectrum.
Crit Rev Clin Lab Sci. 2015;52(3):120-37. doi: 10.3109/10408363.2014.997930. Epub 2015 Jan 19.

引用本文的文献

3
Renal Phenotype Variations among Families with Autosomal Alport Syndrome: Potential Role of Modifier Genes.
Kidney360. 2025 May 1;6(5):824-834. doi: 10.34067/KID.0000000722. Epub 2025 Feb 14.
4
variants that reduce open channel probability are associated with familial osteoarthritis.
medRxiv. 2024 Sep 5:2024.09.03.24312969. doi: 10.1101/2024.09.03.24312969.
5
Breast Cancer Is Increased in Women With Primary Ovarian Insufficiency.
J Clin Endocrinol Metab. 2025 Apr 22;110(5):e1678-e1686. doi: 10.1210/clinem/dgae480.
8
The Influence of a Genetic Variant in on -Associated Skeletal Muscle Disease.
Int J Mol Sci. 2024 Apr 30;25(9):4930. doi: 10.3390/ijms25094930.
9
Prioritization of oligogenic variant combinations in whole exomes.
Bioinformatics. 2024 Mar 29;40(4). doi: 10.1093/bioinformatics/btae184.
10
Genetic Discovery Enabled by A Large Language Model.
bioRxiv. 2023 Nov 12:2023.11.09.566468. doi: 10.1101/2023.11.09.566468.

本文引用的文献

1
Clinical application of transcriptional activators of bile salt transporters.
Mol Aspects Med. 2014 Jun;37(100):57-76. doi: 10.1016/j.mam.2013.12.001. Epub 2013 Dec 12.
2
Improved exome prioritization of disease genes through cross-species phenotype comparison.
Genome Res. 2014 Feb;24(2):340-8. doi: 10.1101/gr.160325.113. Epub 2013 Oct 25.
3
Germline mutations in NFKB2 implicate the noncanonical NF-κB pathway in the pathogenesis of common variable immunodeficiency.
Am J Hum Genet. 2013 Nov 7;93(5):812-24. doi: 10.1016/j.ajhg.2013.09.009. Epub 2013 Oct 17.
4
Clinical whole-exome sequencing for the diagnosis of mendelian disorders.
N Engl J Med. 2013 Oct 17;369(16):1502-11. doi: 10.1056/NEJMoa1306555. Epub 2013 Oct 2.
5
Rare-disease genetics in the era of next-generation sequencing: discovery to translation.
Nat Rev Genet. 2013 Oct;14(10):681-91. doi: 10.1038/nrg3555. Epub 2013 Sep 3.
7
Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ.
N Engl J Med. 2013 May 23;368(21):1971-9. doi: 10.1056/NEJMoa1213507. Epub 2013 May 8.
8
Maternal coding variants in complement receptor 1 and spontaneous idiopathic preterm birth.
Hum Genet. 2013 Aug;132(8):935-42. doi: 10.1007/s00439-013-1304-5. Epub 2013 Apr 17.
9
Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis.
J Allergy Clin Immunol. 2013 Jun;131(6):1624-34. doi: 10.1016/j.jaci.2013.01.052. Epub 2013 Mar 28.
10
Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome.
J Allergy Clin Immunol. 2013 Jun;131(6):1611-23. doi: 10.1016/j.jaci.2012.11.054. Epub 2013 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验