Choi Jung Kyu, Agarwal Pranay, Huang Haishui, Zhao Shuting, He Xiaoming
Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
Biomaterials. 2014 Jun;35(19):5122-8. doi: 10.1016/j.biomaterials.2014.03.028. Epub 2014 Apr 2.
Contemporary systems for in vitro culture of ovarian follicles do not recapitulate the mechanical heterogeneity in mammalian ovary. Here we report microfluidic generation of biomimetic ovarian microtissue for miniaturized three-dimensional (3D) culture of early secondary preantral follicles by using alginate (harder) and collagen (softer) to fabricate the ovarian cortical and medullary tissues, respectively. This biomimetic configuration greatly facilitates follicle development to antral stage. Moreover, it enables in vitro ovulation of cumulus-oocyte complex (COC) from the antral follicles in the absence of luteinizing hormone (LH) and epidermal growth factor (EGF) that are well accepted to be responsible for ovulation in contemporary literature. These data reveal the crucial role of mechanical heterogeneity in the mammalian ovary in regulating follicle development and ovulation. The biomimetic ovarian microtissue and the microfluidic technology developed in this study are valuable for improving in vitro culture of follicles to preserve fertility and for understanding the mechanism of follicle development and ovulation to facilitate the search of cures to infertility due to ovarian disorders.
当代的卵巢卵泡体外培养系统无法重现哺乳动物卵巢中的机械异质性。在此,我们报告了通过微流控技术生成仿生卵巢微组织,用于早期次级前卵泡的小型化三维(3D)培养,分别使用藻酸盐(较硬)和胶原蛋白(较软)来构建卵巢皮质和髓质组织。这种仿生结构极大地促进了卵泡发育至窦状卵泡阶段。此外,在没有促黄体生成素(LH)和表皮生长因子(EGF)的情况下,它能够使窦状卵泡中的卵丘 - 卵母细胞复合体(COC)在体外排卵,而在当代文献中,LH和EGF被广泛认为是排卵的关键因素。这些数据揭示了哺乳动物卵巢中的机械异质性在调节卵泡发育和排卵中的关键作用。本研究中开发的仿生卵巢微组织和微流控技术对于改进卵泡体外培养以保存生育能力,以及理解卵泡发育和排卵机制以促进寻找卵巢疾病所致不孕症的治疗方法具有重要价值。