Suppr超能文献

机械异质性在利用工程化卵巢微组织调节卵泡发育和排卵中的关键作用。

The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue.

作者信息

Choi Jung Kyu, Agarwal Pranay, Huang Haishui, Zhao Shuting, He Xiaoming

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.

Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Biomaterials. 2014 Jun;35(19):5122-8. doi: 10.1016/j.biomaterials.2014.03.028. Epub 2014 Apr 2.

Abstract

Contemporary systems for in vitro culture of ovarian follicles do not recapitulate the mechanical heterogeneity in mammalian ovary. Here we report microfluidic generation of biomimetic ovarian microtissue for miniaturized three-dimensional (3D) culture of early secondary preantral follicles by using alginate (harder) and collagen (softer) to fabricate the ovarian cortical and medullary tissues, respectively. This biomimetic configuration greatly facilitates follicle development to antral stage. Moreover, it enables in vitro ovulation of cumulus-oocyte complex (COC) from the antral follicles in the absence of luteinizing hormone (LH) and epidermal growth factor (EGF) that are well accepted to be responsible for ovulation in contemporary literature. These data reveal the crucial role of mechanical heterogeneity in the mammalian ovary in regulating follicle development and ovulation. The biomimetic ovarian microtissue and the microfluidic technology developed in this study are valuable for improving in vitro culture of follicles to preserve fertility and for understanding the mechanism of follicle development and ovulation to facilitate the search of cures to infertility due to ovarian disorders.

摘要

当代的卵巢卵泡体外培养系统无法重现哺乳动物卵巢中的机械异质性。在此,我们报告了通过微流控技术生成仿生卵巢微组织,用于早期次级前卵泡的小型化三维(3D)培养,分别使用藻酸盐(较硬)和胶原蛋白(较软)来构建卵巢皮质和髓质组织。这种仿生结构极大地促进了卵泡发育至窦状卵泡阶段。此外,在没有促黄体生成素(LH)和表皮生长因子(EGF)的情况下,它能够使窦状卵泡中的卵丘 - 卵母细胞复合体(COC)在体外排卵,而在当代文献中,LH和EGF被广泛认为是排卵的关键因素。这些数据揭示了哺乳动物卵巢中的机械异质性在调节卵泡发育和排卵中的关键作用。本研究中开发的仿生卵巢微组织和微流控技术对于改进卵泡体外培养以保存生育能力,以及理解卵泡发育和排卵机制以促进寻找卵巢疾病所致不孕症的治疗方法具有重要价值。

相似文献

1
The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue.
Biomaterials. 2014 Jun;35(19):5122-8. doi: 10.1016/j.biomaterials.2014.03.028. Epub 2014 Apr 2.
2
In vitro culture of ovarian follicles from Peromyscus.
Semin Cell Dev Biol. 2017 Jan;61:140-149. doi: 10.1016/j.semcdb.2016.07.006. Epub 2016 Jul 7.
3
Microfluidic Encapsulation of Ovarian Follicles for 3D Culture.
Ann Biomed Eng. 2017 Jul;45(7):1676-1684. doi: 10.1007/s10439-017-1823-7. Epub 2017 Mar 20.
4
Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles.
Biol Reprod. 2009 Sep;81(3):587-94. doi: 10.1095/biolreprod.108.074732. Epub 2009 May 27.
5
Utilizing Fibrin-Alginate and Matrigel-Alginate for Mouse Follicle Development in Three-Dimensional Culture Systems.
Biopreserv Biobank. 2018 Apr;16(2):120-127. doi: 10.1089/bio.2017.0087. Epub 2018 Jan 24.
6
Mouse preantral follicle growth in 3D co-culture system using human menstrual blood mesenchymal stem cell.
Reprod Biol. 2018 Mar;18(1):122-131. doi: 10.1016/j.repbio.2018.02.001. Epub 2018 Feb 15.
7
Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles.
Ann Biomed Eng. 2017 Jul;45(7):1633-1649. doi: 10.1007/s10439-017-1816-6. Epub 2017 Feb 28.
10
Engineering the ovarian cycle using in vitro follicle culture.
Hum Reprod. 2015 Jun;30(6):1386-95. doi: 10.1093/humrep/dev052. Epub 2015 Mar 16.

引用本文的文献

2
Controlled Ice Nucleation With a Sand-PDMS Film Device Enhances Cryopreservation of Mouse Preantral Ovarian Follicles.
J Med Device. 2024 Dec 1;18(4):041007. doi: 10.1115/1.4066445. Epub 2024 Sep 30.
3
Microfluidic chips in female reproduction: a systematic review of status, advances, and challenges.
Theranostics. 2024 Jul 15;14(11):4352-4374. doi: 10.7150/thno.97301. eCollection 2024.
4
Organ-on-a-chip: future of female reproductive pathophysiological models.
J Nanobiotechnology. 2024 Jul 31;22(1):455. doi: 10.1186/s12951-024-02651-w.
5
Strategies for developing 3D printed ovarian model for restoring fertility.
Clin Transl Sci. 2024 Jul;17(7):e13863. doi: 10.1111/cts.13863.
6
Multi-cellular engineered living systems to assess reproductive toxicology.
Reprod Toxicol. 2024 Aug;127:108609. doi: 10.1016/j.reprotox.2024.108609. Epub 2024 May 16.
7
3D culture applied to reproduction in females: possibilities and perspectives.
Anim Reprod. 2024 Mar 8;21(1):e20230039. doi: 10.1590/1984-3143-AR2023-0039. eCollection 2024.
8
In Vitro Growth of Human Follicles: Current and Future Perspectives.
Int J Mol Sci. 2024 Jan 26;25(3):1510. doi: 10.3390/ijms25031510.
9
Revolutionizing the female reproductive system research using microfluidic chip platform.
J Nanobiotechnology. 2023 Dec 19;21(1):490. doi: 10.1186/s12951-023-02258-7.
10
The stromal microenvironment and ovarian aging: mechanisms and therapeutic opportunities.
J Ovarian Res. 2023 Dec 13;16(1):237. doi: 10.1186/s13048-023-01300-4.

本文引用的文献

2
4
A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells.
J Mater Chem B. 2013;2013(7):1002-1009. doi: 10.1039/C2TB00058J. Epub 2012 Nov 23.
5
In vitro maturation of cumulus-oocyte complexes for efficient isolation of oocytes from outbred deer mice.
PLoS One. 2013;8(2):e56158. doi: 10.1371/journal.pone.0056158. Epub 2013 Feb 14.
6
Droplet based microfluidics.
Rep Prog Phys. 2012 Jan;75(1):016601. doi: 10.1088/0034-4885/75/1/016601. Epub 2011 Dec 22.
7
Microencapsulating and Banking Living Cells for Cell-Based Medicine.
J Healthc Eng. 2011 Dec;2(4):427-446. doi: 10.1260/2040-2295.2.4.427.
8
Alginate: properties and biomedical applications.
Prog Polym Sci. 2012 Jan;37(1):106-126. doi: 10.1016/j.progpolymsci.2011.06.003.
9
Regulation of folliculogenesis and the determination of ovulation rate in ruminants.
Reprod Fertil Dev. 2011;23(3):444-67. doi: 10.1071/RD09161.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验