Krajewski Stefanie, Rheinlaender Johannes, Ries Philip, Canjuga Denis, Mack Carmen, Scheideler Lutz, Schäffer Tilman E, Geis-Gerstorfer Jürgen, Wendel Hans-Peter, Rupp Frank
Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Calwerstr. 7/1, 72076, Tübingen, Germany.
Anal Bioanal Chem. 2014 May;406(14):3395-406. doi: 10.1007/s00216-014-7769-9. Epub 2014 Apr 6.
Implant-related infections are a major challenge in clinical routine because of severe complications, for example infective endocarditis (IE). The purpose of this study was to investigate the real-time interaction of S. gordonii with proteins and cells important in the development of IE, in a flow system, by use of a quartz-crystal microbalance (QCM). Acoustic sensors were biologically modified by preconditioning with sterile saliva, platelet-poor plasma (PPP), or platelet-rich plasma (PRP), followed then by perfusion of a bacterial suspension. After perfusion, additional fluorescence and scanning electron microscopic (SEM) studies were performed. The surface structure of S. gordonii was analyzed by atomic force microscopy (AFM). Compared with S. gordonii adhesion on the abiotic sensor surface following normal mass loading indicated by a frequency decrease, adhesion on saliva, PPP, or PRP-conditioned sensors resulted in an increase in frequency. Furthermore, adhesion induced slightly increased damping signals for saliva and PPP-coated sensors but a decrease upon bacterial adhesion to PRP, indicating the formation of a more rigid biofilm. Microscopic analysis confirmed the formation of dense and vital bacterial layers and the aggregation of platelets and bacteria. In conclusion, our study shows that the complex patterns of QCM output data observed are strongly dependent on the biological substrate and adhesion mechanisms of S. gordonii. Overall, QCM sheds new light on the pathways of such severe infections as IE.
由于存在严重并发症,如感染性心内膜炎(IE),植入相关感染是临床日常工作中的一项重大挑战。本研究的目的是通过使用石英晶体微天平(QCM),在流动系统中研究戈登氏链球菌与IE发生发展过程中重要的蛋白质和细胞之间的实时相互作用。通过用无菌唾液、乏血小板血浆(PPP)或富血小板血浆(PRP)进行预处理对声学传感器进行生物修饰,然后灌注细菌悬液。灌注后,进行了额外的荧光和扫描电子显微镜(SEM)研究。通过原子力显微镜(AFM)分析了戈登氏链球菌的表面结构。与正常质量负载后频率降低所表明的戈登氏链球菌在非生物传感器表面的粘附相比,其在经唾液、PPP或PRP预处理的传感器上的粘附导致频率增加。此外,粘附使唾液和PPP包被的传感器的阻尼信号略有增加,但细菌粘附到PRP上时阻尼信号降低,表明形成了更致密的生物膜。显微镜分析证实了致密且有活力的细菌层的形成以及血小板和细菌的聚集。总之,我们的研究表明,观察到的QCM输出数据的复杂模式强烈依赖于戈登氏链球菌的生物底物和粘附机制。总体而言,QCM为IE等严重感染的发病机制提供了新的见解。