Shepherd S O, Cocks M, Tipton K D, Witard O C, Ranasinghe A M, Barker T A, Wagenmakers A J M, Shaw C S
Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
Health and Exercise Sciences Research Group, University of Stirling, Stirling, UK.
Exp Physiol. 2014 Jun;99(6):894-908. doi: 10.1113/expphysiol.2014.078014. Epub 2014 Apr 4.
Recent in vitro and in vivo experimental observations suggest that improvements in insulin sensitivity following endurance training are mechanistically linked to increases in muscle oxidative capacity, intramuscular triglyceride (IMTG) utilization during endurance exercise and increases in the content of the lipid droplet-associated perilipin 2 (PLIN2) and perilipin 5 (PLIN5). This study investigated the hypothesis that similar adaptations may also underlie the resistance training (RT)-induced improvements in insulin sensitivity. Thirteen sedentary men (20 ± 1 years old; body mass index 24.8 ± 0.8 kg m(-2)) performed 6 weeks of whole-body RT (three times per week), and changes in peak O2 uptake (in millilitres per minute per kilogram) and insulin sensitivity were assessed. Muscle biopsies (n = 8) were obtained before and after 60 min steady-state cycling at ~65% peak O2 uptake. Immunofluorescence microscopy was used to assess changes in oxidative capacity (measured as cytochrome c oxidase protein content), IMTG and PLIN2 and PLIN5 protein content. Resistance training increased peak O2 uptake (by 8 ± 3%), COX protein content (by 46 ± 13 and 61 ± 13% in type I and II fibres, respectively) and the Matsuda insulin sensitivity index (by 47 ± 6%; all P < 0.05). In type I fibres, IMTG (by 52 ± 11%; P < 0.05) and PLIN2 content (by 107 ± 19%; P < 0.05) were increased and PLIN5 content tended to increase (by 54 ± 22%; P = 0.054) post-training. In type II fibres, PLIN2 content increased (by 57 ± 20%; P < 0.05) and IMTG (by 46 ± 17%; P = 0.1) and PLIN5 content (by 44 ± 24%; P = 0.054) tended to increase post-training. Breakdown of IMTG during moderate-intensity exercise was greater in both type I and type II fibres (by 43 ± 5 and 37 ± 5%, respectively; P < 0.05) post-RT. The results confirm the hypothesis that RT enhances muscle oxidative capacity and increases IMTG breakdown and the content of PLIN2 and PLIN5 in both type I and type II fibres during endurance-type exercise.
近期的体外和体内实验观察表明,耐力训练后胰岛素敏感性的改善在机制上与肌肉氧化能力的提高、耐力运动期间肌内甘油三酯(IMTG)的利用增加以及脂滴相关的围脂滴蛋白2(PLIN2)和围脂滴蛋白5(PLIN5)含量的增加有关。本研究调查了以下假设:类似的适应性变化可能也是抗阻训练(RT)诱导胰岛素敏感性改善的基础。13名久坐不动的男性(20±1岁;体重指数24.8±0.8 kg·m⁻²)进行了6周的全身抗阻训练(每周3次),并评估了峰值摄氧量(毫升/分钟·千克)和胰岛素敏感性的变化。在以约65%峰值摄氧量进行60分钟稳态骑行前后采集肌肉活检样本(n = 8)。采用免疫荧光显微镜评估氧化能力(以细胞色素c氧化酶蛋白含量衡量)、IMTG以及PLIN2和PLIN5蛋白含量的变化。抗阻训练使峰值摄氧量增加(8±3%)、COX蛋白含量增加(I型和II型纤维分别增加46±13%和61±13%)以及松田胰岛素敏感性指数增加(47±6%;所有P<0.05)。在I型纤维中,训练后IMTG(增加52±11%;P<0.05)和PLIN2含量(增加107±19%;P<0.05)增加,PLIN5含量有增加趋势(增加54±22%;P = 0.054)。在II型纤维中,训练后PLIN2含量增加(57±20%;P<0.05),IMTG(增加46±17%;P = 0.1)和PLIN5含量(增加44±24%;P = 0.054)有增加趋势。抗阻训练后,I型和II型纤维在中等强度运动期间IMTG的分解均增加(分别增加43±5%和37±5%;P<0.05)。结果证实了以下假设:抗阻训练可增强肌肉氧化能力,并增加耐力型运动期间I型和II型纤维中IMTG的分解以及PLIN2和PLIN5含量。