Rosenbaum Miriam A, Henrich Alexander W
Institute of Applied Microbiology-Microbial Electrocatalysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
Institute of Applied Microbiology-Microbial Electrocatalysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
Curr Opin Biotechnol. 2014 Oct;29:93-8. doi: 10.1016/j.copbio.2014.03.003. Epub 2014 Apr 5.
In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis.
在许多生物技术领域,代谢工程和合成生物学已成为生物催化剂开发的核心技术。用于生物化学和燃料生产的微生物电催化仍处于起步阶段,目前反应速率和产物谱非常低。因此,分子工程策略对于利用电活性微生物推进和实现许多新的生物生产路线至关重要。细胞外电子转移复杂且尚未解决的生物化学和生理学问题,以及这些新型非模式宿主缺乏用于基因工程的分子工具,构成了这项工作的主要挑战。本综述深入探讨了微生物电催化途径工程的现状、挑战和有前景的方法。