Suppr超能文献

合成生物学工具开发推动了代谢功能多样的土壤细菌中可预测的基因表达。

Synthetic Biology Tool Development Advances Predictable Gene Expression in the Metabolically Versatile Soil Bacterium .

作者信息

Immethun Cheryl M, Kathol Mark, Changa Taity, Saha Rajib

机构信息

Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.

出版信息

Front Bioeng Biotechnol. 2022 Mar 16;10:800734. doi: 10.3389/fbioe.2022.800734. eCollection 2022.

Abstract

Harnessing the unique biochemical capabilities of non-model microorganisms would expand the array of biomanufacturing substrates, process conditions, and products. There are non-model microorganisms that fix nitrogen and carbon dioxide, derive energy from light, catabolize methane and lignin-derived aromatics, are tolerant to physiochemical stresses and harsh environmental conditions, store lipids in large quantities, and produce hydrogen. Model microorganisms often only break down simple sugars and require low stress conditions, but they have been engineered for the sustainable manufacture of numerous products, such as fragrances, pharmaceuticals, cosmetics, surfactants, and specialty chemicals, often by using tools from synthetic biology. Transferring complex pathways has proven to be exceedingly difficult, as the cofactors, cellular conditions, and energy sources necessary for this pathway to function may not be present in the host organism. Utilization of unique biochemical capabilities could also be achieved by engineering the host; although, synthetic biology tools developed for model microbes often do not perform as designed in other microorganisms. The metabolically versatile CGA009, a purple non-sulfur bacterium, catabolizes aromatic compounds derived from lignin in both aerobic and anaerobic conditions and can use light, inorganic, and organic compounds for its source of energy. utilizes three nitrogenase isozymes to fulfill its nitrogen requirements while also generating hydrogen. Furthermore, the bacterium produces two forms of RuBisCo in response to carbon dioxide/bicarbonate availability. While this potential chassis harbors many beneficial traits, stable heterologous gene expression has been problematic due to its intrinsic resistance to many antibiotics and the lack of synthetic biology parts investigated in this microbe. To address these problems, we have characterized gene expression and plasmid maintenance for different selection markers, started a synthetic biology toolbox specifically for the photosynthetic , including origins of replication, fluorescent reporters, terminators, and 5' untranslated regions, and employed the microbe's endogenous plasmid for exogenous protein production. This work provides essential synthetic biology tools for engineering ' many unique biochemical processes and has helped define the principles for expressing heterologous genes in this promising microbe through a methodology that could be applied to other non-model microorganisms.

摘要

利用非模式微生物独特的生化能力将扩大生物制造底物、工艺条件和产品的范围。有些非模式微生物能够固定氮和二氧化碳,从光中获取能量,分解甲烷和木质素衍生的芳烃,耐受物理化学压力和恶劣环境条件,大量储存脂质并产生氢气。模式微生物通常只能分解单糖,需要低压力条件,但通过使用合成生物学工具,它们已被改造用于可持续制造多种产品,如香料、药品、化妆品、表面活性剂和特种化学品。事实证明,转移复杂途径极其困难,因为该途径发挥作用所需的辅因子、细胞条件和能量来源可能在宿主生物体中不存在。通过对宿主进行工程改造也可以实现对独特生化能力的利用;然而,为模式微生物开发的合成生物学工具在其他微生物中往往无法按设计发挥作用。代谢多功能的CGA009是一种紫色非硫细菌,在有氧和厌氧条件下都能分解木质素衍生的芳香化合物,并能利用光、无机和有机化合物作为能量来源。它利用三种固氮酶同工酶来满足其氮需求,同时还产生氢气。此外,该细菌会根据二氧化碳/碳酸氢盐的可用性产生两种形式的核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCo)。虽然这种潜在的底盘具有许多有益特性,但由于其对许多抗生素具有内在抗性以及缺乏对这种微生物进行研究的合成生物学部件,稳定的异源基因表达一直存在问题。为了解决这些问题,我们对不同选择标记的基因表达和质粒维持进行了表征,专门为光合细菌启动了一个合成生物学工具箱,包括复制起点、荧光报告基因、终止子和5'非翻译区,并利用该微生物的内源质粒进行外源蛋白生产。这项工作为改造光合细菌的许多独特生化过程提供了必要的合成生物学工具,并通过一种可应用于其他非模式微生物的方法,帮助确定了在这种有前景的微生物中表达异源基因的原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09c9/8966681/796f6e3dddb1/fbioe-10-800734-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验