Bertolusso Roberto, Tian Bing, Zhao Yingxin, Vergara Leoncio, Sabree Aqeeb, Iwanaszko Marta, Lipniacki Tomasz, Brasier Allan R, Kimmel Marek
Department of Statistics, Rice University, Houston, Texas, United States of America.
Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America.
PLoS One. 2014 Apr 7;9(4):e93396. doi: 10.1371/journal.pone.0093396. eCollection 2014.
We present an integrated dynamical cross-talk model of the epithelial innate immune response (IIR) incorporating RIG-I and TLR3 as the two major pattern recognition receptors (PRR) converging on the RelA and IRF3 transcriptional effectors. bioPN simulations reproduce biologically relevant gene-and protein abundance measurements in response to time course, gene silencing and dose-response perturbations both at the population and single cell level. Our computational predictions suggest that RelA and IRF3 are under auto- and cross-regulation. We predict, and confirm experimentally, that RIG-I mRNA expression is controlled by IRF7. We also predict the existence of a TLR3-dependent, IRF3-independent transcription factor (or factors) that control(s) expression of MAVS, IRF3 and members of the IKK family. Our model confirms the observed dsRNA dose-dependence of oscillatory patterns in single cells, with periods of 1-3 hr. Model fitting to time series, matched by knockdown data suggests that the NF-κB module operates in a different regime (with different coefficient values) than in the TNFα-stimulation experiments. In future studies, this model will serve as a foundation for identification of virus-encoded IIR antagonists and examination of stochastic effects of viral replication. Our model generates simulated time series, which reproduce the noisy oscillatory patterns of activity (with 1-3 hour period) observed in individual cells. Our work supports the hypothesis that the IIR is a phenomenon that emerged by evolution despite highly variable responses at an individual cell level.
我们提出了一种上皮细胞先天免疫反应(IIR)的综合动力学相互作用模型,该模型将视黄酸诱导基因I(RIG-I)和Toll样受体3(TLR3)作为两种主要的模式识别受体(PRR),它们汇聚于RelA和干扰素调节因子3(IRF3)转录效应因子上。生物物理网络(bioPN)模拟在群体和单细胞水平上,针对时间进程、基因沉默和剂量反应扰动,再现了具有生物学相关性的基因和蛋白质丰度测量结果。我们的计算预测表明,RelA和IRF3受到自身调节和交叉调节。我们预测并通过实验证实,RIG-I信使核糖核酸(mRNA)表达受IRF7控制。我们还预测存在一种依赖TLR3、不依赖IRF3的转录因子,它控制线粒体抗病毒信号蛋白(MAVS)、IRF3和IκB激酶(IKK)家族成员的表达。我们的模型证实了在单细胞中观察到的双链RNA(dsRNA)剂量依赖性振荡模式,其周期为1 - 3小时。与基因敲低数据匹配的时间序列模型拟合表明,核因子κB(NF-κB)模块的运行机制与肿瘤坏死因子α(TNFα)刺激实验中的不同(系数值不同)。在未来的研究中,该模型将作为鉴定病毒编码的IIR拮抗剂以及研究病毒复制随机效应的基础。我们的模型生成了模拟时间序列,再现了在单个细胞中观察到的有噪声的振荡活动模式(周期为1 - 3小时)。我们的工作支持了这样一种假说,即尽管在单个细胞水平上反应高度可变,但IIR是一种通过进化出现的现象。