Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA.
Genes (Basel). 2011 Sep 26;2(4):661-70. doi: 10.3390/genes2040661.
Despite intensive investigation for decades, the principle of higher-order organization of mitotic chromosomes is unclear. Here, I describe a novel model that emphasizes a critical role of interactions of homologous DNA repeats (repetitive elements; repetitive sequences) in mitotic chromosome architecture. According to the model, DNA repeats are assembled, via repeat interactions (pairing), into compact core structures that govern the arrangement of chromatins in mitotic chromosomes. Tandem repeat assemblies form a chromosomal axis to coordinate chromatins in the longitudinal dimension, while dispersed repeat assemblies form chromosomal nodes around the axis to organize chromatins in the halo. The chromosomal axis and nodes constitute a firm skeleton on which non-skeletal chromatins can be anchored, folded, and supercoiled.
尽管数十年来进行了深入研究,但有丝分裂染色体的高级组织结构原则仍不清楚。在这里,我描述了一个新模型,该模型强调了同源 DNA 重复(重复元件;重复序列)在有丝分裂染色体结构中的关键作用。根据该模型,通过重复相互作用(配对)将 DNA 重复组装成紧凑的核心结构,从而控制有丝分裂染色体中染色质的排列。串联重复组装形成染色体轴,以协调纵向维度的染色质,而分散的重复组装则在轴周围形成染色体节点,以组织晕轮中的染色质。染色体轴和节点构成了一个坚固的骨架,其上可以固定、折叠和超螺旋化非骨架染色质。