IEEE Trans Image Process. 2014 May;23(5):1980-93. doi: 10.1109/TIP.2014.2310126.
The goal of this paper is to propose a statistical model of quantized discrete cosine transform (DCT) coefficients. It relies on a mathematical framework of studying the image processing pipeline of a typical digital camera instead of fitting empirical data with a variety of popular models proposed in this paper. To highlight the accuracy of the proposed model, this paper exploits it for the detection of hidden information in JPEG images. By formulating the hidden data detection as a hypothesis testing, this paper studies the most powerful likelihood ratio test for the steganalysis of Jsteg algorithm and establishes theoretically its statistical performance. Based on the proposed model of DCT coefficients, a maximum likelihood estimator for embedding rate is also designed. Numerical results on simulated and real images emphasize the accuracy of the proposed model and the performance of the proposed test.
本文旨在提出一种量化离散余弦变换(DCT)系数的统计模型。它依赖于研究典型数字相机图像处理流水线的数学框架,而不是用本文提出的各种流行模型拟合经验数据。为了突出所提出模型的准确性,本文将其用于检测 JPEG 图像中的隐藏信息。通过将隐藏数据检测表述为假设检验,本文研究了用于 Jsteg 算法隐写分析的最强大似然比检验,并从理论上确定了其统计性能。基于提出的 DCT 系数模型,还设计了用于嵌入率的最大似然估计器。对模拟和真实图像的数值结果强调了所提出模型的准确性和所提出检验的性能。