Suppr超能文献

量化 DCT 系数的统计模型:在 Jsteg 算法隐写分析中的应用。

Statistical model of quantized DCT coefficients: application in the steganalysis of Jsteg algorithm.

出版信息

IEEE Trans Image Process. 2014 May;23(5):1980-93. doi: 10.1109/TIP.2014.2310126.

Abstract

The goal of this paper is to propose a statistical model of quantized discrete cosine transform (DCT) coefficients. It relies on a mathematical framework of studying the image processing pipeline of a typical digital camera instead of fitting empirical data with a variety of popular models proposed in this paper. To highlight the accuracy of the proposed model, this paper exploits it for the detection of hidden information in JPEG images. By formulating the hidden data detection as a hypothesis testing, this paper studies the most powerful likelihood ratio test for the steganalysis of Jsteg algorithm and establishes theoretically its statistical performance. Based on the proposed model of DCT coefficients, a maximum likelihood estimator for embedding rate is also designed. Numerical results on simulated and real images emphasize the accuracy of the proposed model and the performance of the proposed test.

摘要

本文旨在提出一种量化离散余弦变换(DCT)系数的统计模型。它依赖于研究典型数字相机图像处理流水线的数学框架,而不是用本文提出的各种流行模型拟合经验数据。为了突出所提出模型的准确性,本文将其用于检测 JPEG 图像中的隐藏信息。通过将隐藏数据检测表述为假设检验,本文研究了用于 Jsteg 算法隐写分析的最强大似然比检验,并从理论上确定了其统计性能。基于提出的 DCT 系数模型,还设计了用于嵌入率的最大似然估计器。对模拟和真实图像的数值结果强调了所提出模型的准确性和所提出检验的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验