School of Computer Science and Engineering, Changshu Institute of Technology, No.99, Hushan Road, Changshu 215500, Jiangsu Province, China.
National Digital Switching System Engineering and Technology Research Center, No.62, Kexue Avenue, Zhengzhou 450001, Henan Province, China.
Math Biosci Eng. 2019 May 8;16(5):4069-4081. doi: 10.3934/mbe.2019201.
The best traditional steganalysis methods aiming at adaptive steganography are the combination of rich models and ensemble classifier. In this study, a new steganalysis method for JPEG images based on convolutional neural networks is proposed to solve the high dimension problem in steganalysis from another aspect. On the basis of the original rich model, the algorithm adds different sizes of discrete cosine transform (DCT) basis functions to extract different detection features. Different features are combined at the fully connected layer through inputting 2-D feature values to the neural network convolutional layer for predictive classification. Experimental results show that convolutional neural networks as classifiers do not require a large number of training samples, and the final classification performance is better than that of the original ensemble classifier.
针对自适应隐写术的最佳传统隐写分析方法是丰富模型和集成分类器的组合。在这项研究中,提出了一种基于卷积神经网络的 JPEG 图像新隐写分析方法,从另一个方面解决隐写分析中的高维问题。在原始丰富模型的基础上,该算法添加了不同大小的离散余弦变换(DCT)基函数,以提取不同的检测特征。不同的特征通过将 2-D 特征值输入到神经网络卷积层,在全连接层进行组合,以进行预测分类。实验结果表明,作为分类器的卷积神经网络不需要大量的训练样本,最终的分类性能优于原始的集成分类器。