Suppr超能文献

基于相干语义-视觉索引的大规模云图像检索。

Coherent Semantic-Visual Indexing for Large-Scale Image Retrieval in the Cloud.

出版信息

IEEE Trans Image Process. 2017 Sep;26(9):4128-4138. doi: 10.1109/TIP.2017.2710635.

Abstract

The rapidly increasing number of images on the internet has further increased the need for efficient indexing for digital image searching of large databases. The design of a cloud service that provides high efficiency but compact image indexing remains challenging, partly due to the well-known semantic gap between user queries and the rich semantics of large-scale data sets. In this paper, we construct a novel joint semantic-visual space by leveraging visual descriptors and semantic attributes, which narrows the semantic gap by combining both attributes and indexing into a single framework. Such a joint space embraces the flexibility of coherent semantic-visual indexing, which employs binary codes to boost retrieval speed while maintaining accuracy. To solve the proposed model, we make the following contributions. First, we propose an interactive optimization method to find the joint semantic and visual descriptor space. Second, we prove convergence of our optimization algorithm, which guarantees a good solution after a certain number of iterations. Third, we integrate the semantic-visual joint space system with spectral hashing, which finds an efficient solution to search up to billion-scale data sets. Finally, we design an online cloud service to provide a more efficient online multimedia service. Experiments on two standard retrieval datasets (i.e., Holidays1M, Oxford5K) show that the proposed method is promising compared with the current state-of-the-art and that the cloud system significantly improves performance.

摘要

互联网上的图像数量迅速增加,这进一步增加了对大型数据库的数字图像搜索进行有效索引的需求。设计一种提供高效率但紧凑的图像索引的云服务仍然具有挑战性,部分原因是用户查询和大规模数据集的丰富语义之间存在众所周知的语义差距。在本文中,我们通过利用视觉描述符和语义属性来构建一个新颖的联合语义-视觉空间,通过将这两种属性和索引组合到一个单一的框架中,缩小了语义差距。这样的联合空间具有连贯的语义-视觉索引的灵活性,它使用二进制代码来提高检索速度,同时保持准确性。为了解决所提出的模型,我们做出了以下贡献。首先,我们提出了一种交互式优化方法来寻找联合语义和视觉描述符空间。其次,我们证明了我们的优化算法的收敛性,这保证了在经过一定次数的迭代后可以得到一个很好的解。第三,我们将语义-视觉联合空间系统与谱哈希集成,为搜索数亿规模的数据集找到了一个有效的解决方案。最后,我们设计了一个在线云服务,以提供更高效的在线多媒体服务。在两个标准检索数据集(即 Holidays1M、Oxford5K)上的实验表明,与当前的最先进方法相比,所提出的方法很有前景,并且云系统显著提高了性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验