Suppr超能文献

基于CuO-ZnO微/纳米多孔阵列膜的化学传感器:对H2S的新传感特性

CuO-ZnO micro/nanoporous array-film-based chemosensors: new sensing properties to H2S.

作者信息

Xu Zongke, Duan Guotao, Li Yue, Liu Guangqiang, Zhang Hongwen, Dai Zhengfei, Cai Weiping

机构信息

Key Lab of Materials Physics Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (P.R. China), Fax: (+86) 551-65591434.

出版信息

Chemistry. 2014 May 12;20(20):6040-6. doi: 10.1002/chem.201304722. Epub 2014 Apr 7.

Abstract

CuO-ZnO micro/nanoporous array-films are synthesized by transferring a solution-dipped self-organized colloidal template onto a device substrate and sequent heat treatment. Their morphologies and structures are characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectrum analysis. Based on the sensing measurement, it is found that the CuO-ZnO films prepared with the composition of [Cu(2+)]/[Zn(2+)]=0.005, 0.01, and 0.05 all show a nice sensitivity to 10 ppm H2S. Interestingly, three different zones exist in the patterns of gas responses versus H2S concentrations: a platform zone, a rapidly increasing zone, and a slowly increasing zone. Further experiments show that the hybrid CuO-ZnO porous film sensor exhibits shorter recovery time and better selectivity to H2S gas against other interfering gases at a concentration of 10 ppm. These new sensing properties may be due to a depletion layer induced by p-n junction between p-type CuO and n-type ZnO and high chemical activity of CuO to H2S. This work will provide a new construction route of ZnO-based sensing materials, which can be used as H2S sensors with high performances.

摘要

通过将浸渍溶液的自组装胶体模板转移到器件衬底上并进行后续热处理,合成了CuO-ZnO微/纳米多孔阵列薄膜。通过X射线衍射、场发射扫描电子显微镜、透射电子显微镜和X射线光电子能谱分析对其形貌和结构进行了表征。基于传感测量,发现以[Cu(2+)]/[Zn(2+)] = 0.005、0.01和0.05的组成制备的CuO-ZnO薄膜对10 ppm的H2S均表现出良好的灵敏度。有趣的是,气体响应与H2S浓度的关系曲线中存在三个不同的区域:一个平台区、一个快速增加区和一个缓慢增加区。进一步的实验表明,混合的CuO-ZnO多孔薄膜传感器在10 ppm浓度下对H2S气体表现出更短的恢复时间和对其他干扰气体更好的选择性。这些新的传感特性可能归因于p型CuO和n型ZnO之间的p-n结诱导的耗尽层以及CuO对H2S的高化学活性。这项工作将提供一种基于ZnO的传感材料的新构建途径,可作为高性能的H2S传感器使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验