Suppr超能文献

金纳米颗粒/氧化锡/还原氧化石墨烯三元纳米复合材料的简便制备及其高性能 SF 分解组分传感

Facile Fabrication of Au Nanoparticles/Tin Oxide/Reduced Graphene Oxide Ternary Nanocomposite and Its High-Performance SF Decomposition Components Sensing.

作者信息

Pi Shoumiao, Zhang Xiaoxing, Cui Hao, Chen Dachang, Zhang Guozhi, Xiao Song, Tang Ju

机构信息

School of Electrical Engineering, Wuhan University, Wuhan, China.

Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan, China.

出版信息

Front Chem. 2019 Jul 15;7:476. doi: 10.3389/fchem.2019.00476. eCollection 2019.

Abstract

A high-performance sensor for detecting SF decomposition components (HS and SOF) was fabricated via hydrothermal method using Au nanoparticles/tin oxide/reduced graphene oxide (AuNPs-SnO-reduced graphene oxide [rGO]) hybrid nanomaterials. The sensor has gas-sensing properties that responded and recovered rapidly at a relatively low operating temperature. The structure and micromorphology of the prepared materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Raman spectroscopy, energy-dispersive spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The gas-sensing properties of AuNPs-SnO-rGO hybrid materials were studied by exposure to target gases. Results showed that AuNPs-SnO-rGO sensors had desirable response/recovery time. Compared with pure rGO (210/452 s, 396/748 s) and SnO/rGO (308/448 s, 302/467 s), the response/recovery time ratios of AuNPs-SnO-rGO sensors for 50 ppm HS and 50 ppm SOF at 110°C were 26/35 s and 41/68 s, respectively. Furthermore, the two direction-resistance changes of the AuNPs-SnO-rGO sensor when exposed to HS and SOF gas made this sensor a suitable candidate for selective detection of SF decomposition components. The enhanced sensing performance can be attributed to the heterojunctions with the highly conductive graphene, SnO films and Au nanoparticles.

摘要

采用水热法,以金纳米颗粒/氧化锡/还原氧化石墨烯(AuNPs-SnO-还原氧化石墨烯[rGO])杂化纳米材料制备了一种用于检测SF分解成分(HS和SOF)的高性能传感器。该传感器具有气敏特性,在相对较低的工作温度下响应和恢复迅速。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、拉曼光谱、能量色散光谱(EDS)和布鲁诺尔-埃米特-泰勒(BET)对所制备材料的结构和微观形貌进行了表征。通过暴露于目标气体来研究AuNPs-SnO-rGO杂化材料的气敏特性。结果表明,AuNPs-SnO-rGO传感器具有理想的响应/恢复时间。与纯rGO(210/452 s,396/748 s)和SnO/rGO(308/448 s,302/467 s)相比,AuNPs-SnO-rGO传感器在110°C下对50 ppm HS和50 ppm SOF的响应/恢复时间比分别为26/35 s和41/68 s。此外,AuNPs-SnO-rGO传感器在暴露于HS和SOF气体时的两个方向电阻变化使其成为选择性检测SF分解成分的合适候选者。传感性能的增强可归因于与高导电性石墨烯、SnO薄膜和金纳米颗粒形成的异质结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f119/6660266/007abd0dd673/fchem-07-00476-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验