Suppr超能文献

一种利用遥感进行大面积森林干扰制图的实用和自动化方法。

A practical and automated approach to large area forest disturbance mapping with remote sensing.

机构信息

Department of Forest and Wildlife Ecology & Center for Sustainability and the Global Environment, University of Wisconsin - Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS One. 2014 Apr 9;9(4):e78438. doi: 10.1371/journal.pone.0078438. eCollection 2014.

Abstract

In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions.

摘要

在本文中,我描述了一种使用一对 Landsat 图像自动进行森林干扰制图的方法。该方法基于传统的成对变化检测方法,但旨在提取无需用户交互的训练数据,并使用能够处理标记错误的训练数据的稳健分类算法。该过程的步骤包括:i)创建水、无林地、云和云影的掩模;ii)识别其值高于或低于由短波段(SWIR)差值图像中局部窗口生成的直方图的平均值的几个标准差定义的阈值的训练像素;iii)通过使用 n 折交叉验证过滤原始训练数据,以消除标记错误的训练样本;最后,iv)使用监督分类算法绘制森林干扰图。当应用于 1985 年至 2010 年间五年间隔在美国的 17 个 Landsat 足迹时,该方法产生的森林干扰图的总体准确率为 80%至 95%,与传统森林变化检测方法获得的结果相当。分类错误的主要来源包括森林识别不准确(误报)、与土地/水掩模相关的问题以及图像筛选过程中遗漏的云和云影。该方法需要来自生长高峰期的图像,至少对于落叶林地点如此,并且无法轻易区分森林采伐与自然干扰或其他类型的土地覆盖变化。用于构成图像对的图像之间的年数越多,检测森林干扰的准确性就越低。尽管如此,该方法的相对高精度、处理所需的用户输入很少或无需、制图速度快以及方法简单,使其特别适用于对非常大的区域进行森林覆盖变化分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea62/3981667/092402a03030/pone.0078438.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验