Yazaki Ikuko, Tsurugaya Toko, Santella Luigia, Chun Jong Tai, Amore Gabriele, Kusunoki Shinichiro, Asada Akiko, Togo Tatsuru, Akasaka Koji
Department of Biological Sciences,Tokyo Metropolitan University,Minamiohsawa 1-1,Hachiohji-shi,Tokyo 192-0397,Japan.
Misaki Marine Biological Station,University of Tokyo,Miura,Japan.
Zygote. 2015 Jun;23(3):426-46. doi: 10.1017/S0967199414000033. Epub 2014 Apr 9.
Sea urchin embryos initiate cell specifications at the 16-cell stage by forming the mesomeres, macromeres and micromeres according to the relative position of the cells in the animal-vegetal axis. The most vegetal cells, micromeres, autonomously differentiate into skeletons and induce the neighbouring macromere cells to become mesoendoderm in the β-catenin-dependent Wnt8 signalling pathway. Although the underlying molecular mechanism for this progression is largely unknown, we have previously reported that the initial events might be triggered by the Ca2+ influxes through the egg-originated L-type Ca2+ channels distributed asymmetrically along the animal-vegetal axis and through the stretch-dependent Ca2+channels expressed specifically in the micromere at the 4th cleavage. In this communication, we have examined whether one of the earliest Ca2+ targets, protein kinase C (PKC), plays a role in cell specification upstream of β-catenin. To this end, we surveyed the expression pattern of β-catenin in early embryos in the presence or absence of the specific peptide inhibitor of Hemicentrotus pulcherrimus PKC (HpPKC-I). Unlike previous knowledge, we have found that the initial nuclear entrance of β-catenin does not take place in the micromeres, but in the macromeres at the 16-cell stage. Using the HpPKC-I, we have demonstrated further that PKC not only determines cell-specific nucleation of β-catenin, but also regulates a variety of cell specification events in the early sea urchin embryos by modulating the cell adhesion structures, actin dynamics, intracellular Ca2+ signalling, and the expression of key transcription factors.
海胆胚胎在16细胞阶段通过根据细胞在动物 - 植物轴上的相对位置形成中节、大卵裂球和小卵裂球来启动细胞特化。最靠近植物极的细胞,即小卵裂球,自主分化为骨骼,并在β-连环蛋白依赖性Wnt8信号通路中诱导相邻的大卵裂球细胞成为中内胚层。尽管这一过程的潜在分子机制在很大程度上尚不清楚,但我们之前曾报道,最初的事件可能是由Ca2+内流引发的,这些Ca2+通过沿动物 - 植物轴不对称分布的源自卵子的L型Ca2+通道以及在第四次卵裂时在小卵裂球中特异性表达的拉伸依赖性Ca2+通道进入细胞。在本通讯中,我们研究了最早的Ca2+靶点之一,蛋白激酶C(PKC),是否在β-连环蛋白上游的细胞特化中发挥作用。为此,我们在存在或不存在海胆紫球海胆PKC(HpPKC-I)的特异性肽抑制剂的情况下,观察了早期胚胎中β-连环蛋白的表达模式。与先前的认知不同,我们发现β-连环蛋白最初进入细胞核并非发生在小卵裂球中,而是在16细胞阶段的大卵裂球中。使用HpPKC-I,我们进一步证明PKC不仅决定β-连环蛋白的细胞特异性核定位,还通过调节细胞粘附结构、肌动蛋白动力学、细胞内Ca2+信号以及关键转录因子的表达,调控早期海胆胚胎中的各种细胞特化事件。