Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6275-80. doi: 10.1073/pnas.1402789111. Epub 2014 Apr 9.
Aminoglycosides are potent, broad spectrum, ribosome-targeting antibacterials whose clinical efficacy is seriously threatened by multiple resistance mechanisms. Here, we report the structural basis for 30S recognition by the novel plasmid-mediated aminoglycoside-resistance rRNA methyltransferase A (NpmA). These studies are supported by biochemical and functional assays that define the molecular features necessary for NpmA to catalyze m(1)A1408 modification and confer resistance. The requirement for the mature 30S as a substrate for NpmA is clearly explained by its recognition of four disparate 16S rRNA helices brought into proximity by 30S assembly. Our structure captures a "precatalytic state" in which multiple structural reorganizations orient functionally critical residues to flip A1408 from helix 44 and position it precisely in a remodeled active site for methylation. Our findings provide a new molecular framework for the activity of aminoglycoside-resistance rRNA methyltransferases that may serve as a functional paradigm for other modification enzymes acting late in 30S biogenesis.
氨基糖苷类抗生素是一种强效、广谱的核糖体靶向抗菌药物,但由于多种耐药机制的存在,其临床疗效受到严重威胁。在这里,我们报告了新型质粒介导的氨基糖苷类耐药 rRNA 甲基转移酶 A(NpmA)对 30S 核糖体的识别结构基础。这些研究得到了生化和功能分析的支持,这些分析定义了 NpmA 催化 m(1)A1408 修饰并赋予抗性所需的分子特征。NpmA 对成熟 30S 核糖体作为底物的要求,通过其对由 30S 组装带来的四个不同的 16S rRNA 螺旋的识别得到了明确解释。我们的结构捕获了一个“预催化状态”,其中多个结构重排使功能关键残基定向,从而将 A1408 从 44 号螺旋中翻转,并将其精确地定位在经过重塑的活性位点中进行甲基化。我们的研究结果为氨基糖苷类耐药 rRNA 甲基转移酶的活性提供了一个新的分子框架,该框架可能成为其他在 30S 生物发生后期发挥作用的修饰酶的功能范例。