Duan Chenxi, Adam Virgile, Byrdin Martin, Bourgeois Dominique
Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France.
Methods Mol Biol. 2014;1148:177-202. doi: 10.1007/978-1-4939-0470-9_12.
Fluorescent proteins have revolutionized life sciences because they allow noninvasive and highly specific labeling of biological samples. The subset of "phototransformable" fluorescent proteins recently attracted a widespread interest, as their fluorescence state can be modified upon excitation at defined wavelengths. The fluorescence emission of Reversibly Switchable Fluorescent Proteins (RSFPs), in particular, can be repeatedly switched on and off. RSFPs enable many new exciting modalities in fluorescence microscopy and biotechnology, including protein tracking, photochromic Förster Resonance Energy Transfer, super-resolution microscopy, optogenetics, and ultra-high-density optical data storage. Photoswitching in RSFPs typically results from chromophore cis-trans isomerization accompanied by a protonation change, but other switching schemes based on, e.g., chromophore hydration/dehydration have also been discovered. In this chapter, we review the main structural features at the basis of photoswitching in RSFPs.
荧光蛋白彻底改变了生命科学,因为它们能够对生物样本进行非侵入性且高度特异性的标记。“光转化型”荧光蛋白的子集最近引起了广泛关注,因为它们的荧光状态可在特定波长激发时发生改变。特别是,可逆开关荧光蛋白(RSFP)的荧光发射可以反复开启和关闭。RSFP在荧光显微镜和生物技术中实现了许多令人兴奋的新应用,包括蛋白质追踪、光致变色荧光共振能量转移、超分辨率显微镜、光遗传学以及超高密度光学数据存储。RSFP中的光开关通常源于发色团顺反异构化并伴随质子化变化,但也发现了其他基于例如发色团水合/脱水的开关机制。在本章中,我们将综述RSFP光开关作用的主要结构特征。