Suppr超能文献

用于心脏运动分析的具有稀疏性约束的可变形模型。

Deformable models with sparsity constraints for cardiac motion analysis.

作者信息

Yu Yang, Zhang Shaoting, Li Kang, Metaxas Dimitris, Axel Leon

机构信息

Department of Computer Science, Rutgers University, Piscataway, NJ, USA.

Department of Computer Science, University of North Carolina at Charlotte, NC, USA.

出版信息

Med Image Anal. 2014 Aug;18(6):927-37. doi: 10.1016/j.media.2014.03.002. Epub 2014 Mar 27.

Abstract

Deformable models integrate bottom-up information derived from image appearance cues and top-down priori knowledge of the shape. They have been widely used with success in medical image analysis. One limitation of traditional deformable models is that the information extracted from the image data may contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from the compressed sensing, a technique for accurate signal reconstruction by harnessing some sparseness priors. In this paper, we employ sparsity constraints to handle the outliers or gross errors, and integrate them seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels.

摘要

可变形模型整合了从图像外观线索中获取的自下而上的信息以及形状的自上而下的先验知识。它们已在医学图像分析中得到广泛且成功的应用。传统可变形模型的一个局限性在于,从图像数据中提取的信息可能包含严重误差,这会对变形精度产生不利影响。为缓解此问题,我们引入了一类新的可变形模型,其灵感来源于压缩感知,这是一种通过利用某些稀疏先验来进行精确信号重建的技术。在本文中,我们采用稀疏约束来处理异常值或严重误差,并将它们与可变形模型无缝集成。所提出的新公式被应用于使用标记磁共振成像(tMRI)的心脏运动分析,其中由于图像质量较差,自动标记线跟踪结果噪声很大。我们的新可变形模型能够稳健地跟踪心脏运动,并且所得应变与根据手动标记计算出的应变一致。

相似文献

1
Deformable models with sparsity constraints for cardiac motion analysis.
Med Image Anal. 2014 Aug;18(6):927-37. doi: 10.1016/j.media.2014.03.002. Epub 2014 Mar 27.
2
Sparse deformable models with application to cardiac motion analysis.
Inf Process Med Imaging. 2013;23:208-19. doi: 10.1007/978-3-642-38868-2_18.
3
LV motion and strain computation from tMRI based on meshless deformable models.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):636-44. doi: 10.1007/978-3-540-85988-8_76.
4
Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models.
IEEE Trans Med Imaging. 2010 Jan;29(1):1-11. doi: 10.1109/TMI.2009.2021041. Epub 2009 Apr 14.
6
Improving contrast and tracking of tags in cardiac magnetic resonance images.
Magn Reson Med. 1999 May;41(5):973-82. doi: 10.1002/(sici)1522-2594(199905)41:5<973::aid-mrm17>3.0.co;2-8.
7
Physiome model based state-space framework for cardiac kinematics recovery.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):720-7. doi: 10.1007/11866565_88.
8
Strain measurement in the left ventricle during systole with deformable image registration.
Med Image Anal. 2009 Apr;13(2):354-61. doi: 10.1016/j.media.2008.07.004. Epub 2008 Sep 17.
9
Biomechanically-constrained 4D estimation of myocardial motion.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):257-65. doi: 10.1007/978-3-642-04271-3_32.

引用本文的文献

1
TENDER: Tensor non-local deconvolution enabled radiation reduction in CT perfusion.
Neurocomputing (Amst). 2017 Mar 15;229:13-22. doi: 10.1016/j.neucom.2016.03.109. Epub 2016 Nov 17.
3
Phase Vector Incompressible Registration Algorithm for Motion Estimation From Tagged Magnetic Resonance Images.
IEEE Trans Med Imaging. 2017 Oct;36(10):2116-2128. doi: 10.1109/TMI.2017.2723021. Epub 2017 Jul 4.
5
Statistical shape modeling of the left ventricle: myocardial infarct classification challenge.
IEEE J Biomed Health Inform. 2018 Mar;22(2):503-515. doi: 10.1109/JBHI.2017.2652449. Epub 2017 Jan 17.
6
Solving Logistic Regression with Group Cardinality Constraints for Time Series Analysis.
Med Image Comput Comput Assist Interv. 2015 Oct;9351:459-466. doi: 10.1007/978-3-319-24574-4_55. Epub 2015 Nov 18.
7
Computing group cardinality constraint solutions for logistic regression problems.
Med Image Anal. 2017 Jan;35:58-69. doi: 10.1016/j.media.2016.05.011. Epub 2016 Jun 11.

本文引用的文献

1
Sparse deformable models with application to cardiac motion analysis.
Inf Process Med Imaging. 2013;23:208-19. doi: 10.1007/978-3-642-38868-2_18.
2
Segmentation of 4D echocardiography using stochastic online dictionary learning.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):57-65. doi: 10.1007/978-3-642-40760-4_8.
3
Contour tracking in echocardiographic sequences via sparse representation and dictionary learning.
Med Image Anal. 2014 Feb;18(2):253-71. doi: 10.1016/j.media.2013.10.012. Epub 2013 Nov 6.
4
Benchmarking framework for myocardial tracking and deformation algorithms: an open access database.
Med Image Anal. 2013 Aug;17(6):632-48. doi: 10.1016/j.media.2013.03.008. Epub 2013 Apr 20.
5
Deformable segmentation via sparse representation and dictionary learning.
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.
6
Cardiac motion and deformation recovery from MRI: a review.
IEEE Trans Med Imaging. 2012 Feb;31(2):487-503. doi: 10.1109/TMI.2011.2171706. Epub 2011 Oct 13.
7
Towards robust and effective shape modeling: sparse shape composition.
Med Image Anal. 2012 Jan;16(1):265-77. doi: 10.1016/j.media.2011.08.004. Epub 2011 Sep 5.
8
Segmentation of brain images using adaptive atlases with application to ventriculomegaly.
Inf Process Med Imaging. 2011;22:1-12. doi: 10.1007/978-3-642-22092-0_1.
10
Point set registration: coherent point drift.
IEEE Trans Pattern Anal Mach Intell. 2010 Dec;32(12):2262-75. doi: 10.1109/TPAMI.2010.46.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验