Suppr超能文献

一种结合随机森林和活动轮廓模型的方法用于容积磁共振成像中左心房的全自动分割

A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI.

作者信息

Ma Chao, Luo Gongning, Wang Kuanquan

机构信息

Biocomputing Research Center, School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Biomed Res Int. 2017;2017:8381094. doi: 10.1155/2017/8381094. Epub 2017 Feb 19.

Abstract

Segmentation of the left atrium (LA) from cardiac magnetic resonance imaging (MRI) datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs) and active contour model (ACM) approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC) and average surface-to-surface distance (S2S), were computed as 0.9227 ± 0.0598 and 1.14 ± 1.205 mm, versus those of 0.6222-0.878 and 1.34-8.72 mm, obtained by other methods, respectively.

摘要

从心脏磁共振成像(MRI)数据集中分割左心房(LA)对于图像引导的心房颤动消融、LA纤维化定量以及心脏生物物理建模具有重要意义。然而,由于图像分辨率有限、不同受试者解剖结构差异较大以及心脏的动态运动,从心脏MRI中自动分割LA具有挑战性。在这项工作中,我们提出了一种结合随机森林(RFs)和主动轮廓模型(ACM)的方法,用于从心脏容积MRI中全自动分割LA。具体而言,我们在自上下文方案中使用RFs,以有效地将多源图像的上下文和外观信息整合在一起,用于LA形状推断。然后将推断出的形状纳入体积可扩展的ACM中,以进一步提高分割精度。我们在来自STACOM 2013和HVSMR 2016数据库的心脏容积MRI数据集上验证了所提出的方法,结果表明它优于其他最新的自动LA分割方法。计算得到的验证指标,平均骰子系数(DC)和平均表面到表面距离(S2S)分别为0.9227±0.0598和1.14±1.205毫米,而其他方法得到的结果分别为0.6222 - 0.878和1.34 - 8.72毫米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c94/5337796/cd076996037f/BMRI2017-8381094.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验