Hiller Corinna, Nissen Amrei, Benítez Diego, Comini Marcelo A, Krauth-Siegel R Luise
Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany.
Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
PLoS Pathog. 2014 Apr 10;10(4):e1004075. doi: 10.1371/journal.ppat.1004075. eCollection 2014 Apr.
African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px)-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective stage of T. brucei. The respective knockout of the cytosolic px I-II in the procyclic insect form resulted in cells that were fully viable in Trolox-free medium.
非洲锥虫表达三种几乎相同的非硒谷胱甘肽过氧化物酶(Px)型酶,这些酶优先解毒脂质衍生的氢过氧化物。如先前所示,缺乏线粒体Px III的布氏锥虫血流型仅表现出微弱且短暂的增殖缺陷,而缺乏胞质Px I和Px II的寄生虫则会经历极快的脂质过氧化和细胞裂解。通过在培养基中添加α-生育酚衍生物Trolox可以完全挽救该表型。然而,快速细胞死亡的潜在机制仍然难以捉摸。在这里,我们表明溶酶体是细胞损伤的起源。在Trolox存在的情况下,用Alexa Fluor偶联的葡聚糖或溶酶体示踪剂喂养px I-II基因敲除的寄生虫,会产生离散的溶酶体染色。然而,在去除抗氧化剂后,信号逐渐扩散到整个细胞体并分别完全消失。布氏锥虫通过内吞宿主转铁蛋白来获取铁。在培养基中添加铁或转铁蛋白会诱导px I-II基因敲除细胞裂解,而铁螯合剂去铁胺和脱铁转铁蛋白则会减弱这种裂解。用MitoTracker和针对溶酶体标记蛋白p67的抗体进行免疫荧光显微镜检查发现,溶酶体的解体先于线粒体损伤。体内实验证实了线粒体过氧化物酶的作用可忽略不计:与野生型寄生虫相比,感染px III基因敲除细胞的小鼠疾病发展仅略有延迟。我们的数据表明,在布氏锥虫血流型中,溶酶体而非线粒体是氧化损伤的主要部位,胞质硫醇/硫氧还蛋白依赖性过氧化物酶可保护溶酶体免受铁诱导的膜过氧化。这一过程似乎与布氏锥虫感染阶段的高内吞率和独特的铁获取机制密切相关。在昆虫前循环型中胞质px I-II的相应敲除导致细胞在无Trolox的培养基中完全存活。