Musunda Blessing, Benítez Diego, Dirdjaja Natalie, Comini Marcelo A, Krauth-Siegel R Luise
Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
Mol Biochem Parasitol. 2015 Dec;204(2):93-105. doi: 10.1016/j.molbiopara.2016.02.001. Epub 2016 Feb 6.
As constituents of their unusual trypanothione-based thiol metabolism, African trypanosomes express two dithiol glutaredoxins (Grxs), a cytosolic Grx1 and a mitochondrial Grx2, with so far unknown biological functions. As revealed by gel shift assays, in the mammalian bloodstream form of Trypanosoma brucei, Grx1 is in the fully reduced state. Upon diamide treatment of the cells, Grx1 forms an active site disulfide bridge that is rapidly re-reduced after stress removal; Cys76, a conserved non-active site Cys remains in the thiol state. Deletion of both grx1 alleles does not result in any proliferation defect of neither the procyclic insect form nor the bloodstream form, even not under various stress conditions. In addition, the Grx1-deficient parasites are fully infectious in the mouse model. A functional compensation by Grx2 is unlikely as identical levels of Grx2 were found in wildtype and Grx1-deficient cells. In the classical hydroxyethyl disulfide assay, Grx1-deficient bloodstream cells display 50-60% of the activity of wildtype cells indicating that the cytosolic oxidoreductase accounts for a major part of the total deglutathionylation capacity of the parasite. Intriguingly, at elevated temperature, proliferation of the Grx1-deficient bloodstream parasites is significantly less affected compared to wildtype cells. When cultured for three days at 39°C, only 51% of the cells in the wildtype population retained normal morphology with single mitochondrial and nuclear DNA (1K1N), whereas 27% of the cells displayed ≥2K2N. In comparison, 64% of the Grx1-deficient cells kept the 1K1N phenotype and only 18% had ≥2K2N. The data suggest that Grx1 plays a role in the regulation of the thermotolerance of the parasites by (in)directly interfering with the progression of the cell cycle, a process that may comprise protein (de)glutathionylation step(s).
作为其独特的基于锥虫硫醇的硫醇代谢的组成部分,非洲锥虫表达两种二硫醇谷氧还蛋白(Grxs),一种胞质Grx1和一种线粒体Grx2,其生物学功能迄今未知。凝胶迁移分析表明,在布氏锥虫的哺乳动物血液形式中,Grx1处于完全还原状态。用二酰胺处理细胞后,Grx1形成一个活性位点二硫键,在应激消除后迅速重新还原;保守的非活性位点半胱氨酸Cys76保持硫醇状态。删除两个grx1等位基因不会导致前循环昆虫形式或血液形式的任何增殖缺陷,即使在各种应激条件下也是如此。此外,Grx1缺陷型寄生虫在小鼠模型中具有完全传染性。Grx2不太可能进行功能补偿,因为在野生型和Grx1缺陷型细胞中发现的Grx2水平相同。在经典的羟乙基二硫化物测定中,Grx1缺陷型血液细胞的活性为野生型细胞的50-60%,这表明胞质氧化还原酶占寄生虫总去谷胱甘肽化能力的主要部分。有趣的是,在高温下,Grx1缺陷型血液寄生虫的增殖与野生型细胞相比受到的影响明显较小。在39°C培养三天后,野生型群体中只有51%的细胞保持正常形态,具有单个线粒体和核DNA(1K1N),而27%的细胞显示≥2K2N。相比之下,64%的Grx1缺陷型细胞保持1K1N表型,只有18%的细胞≥2K2N。数据表明,Grx1通过(直接或间接)干扰细胞周期进程在寄生虫耐热性调节中发挥作用,这一过程可能包括蛋白质(去)谷胱甘肽化步骤。