Darkins Robert, Sushko Maria L, Liu Jun, Duffy Dorothy M
UCL Physics & Astronomy, University College London, London, UK.
Phys Chem Chem Phys. 2014 May 28;16(20):9441-7. doi: 10.1039/c3cp54357a.
Stress engineering is becoming an increasingly important method for controlling electronic, optical, and magnetic properties of nanostructures, although the concept of stress is poorly defined at the nanoscale. We outline a procedure for computing bulk and surface stress in nanoparticles using atomistic simulation. The method is applicable to ionic and non-ionic materials alike and may be extended to other nanostructures. We apply it to spherical anatase nanoparticles ranging from 2 to 6 nm in diameter and obtain a surface stress of 0.89 N m(-1), in agreement with experimental measurements. Based on the extent that stress inhomogeneities at the surface are transmitted into the bulk, two characteristic length-scales are identified: below 3 nm bulk and surface regions cannot be defined and the available analytic theories for stress are not applicable, and above about 5 nm the stress becomes well-described by the theoretical Young-Laplace equation. The effect of a net surface charge on the bulk stress is also investigated. It is found that moderate surface charges can induce significant bulk stresses, on the order of 100 MPa, in nanoparticles within this size range.
应力工程正日益成为控制纳米结构的电子、光学和磁性特性的重要方法,尽管在纳米尺度上应力的概念定义尚不明确。我们概述了一种使用原子模拟计算纳米颗粒中体应力和表面应力的程序。该方法同样适用于离子材料和非离子材料,并且可以扩展到其他纳米结构。我们将其应用于直径为2至6纳米的球形锐钛矿纳米颗粒,并获得了0.89 N m⁻¹的表面应力,这与实验测量结果一致。基于表面应力不均匀性传递到体相的程度,确定了两个特征长度尺度:在3纳米以下,无法定义体相和表面区域,现有的应力分析理论也不适用;在约5纳米以上,应力可以用理论杨氏-拉普拉斯方程很好地描述。还研究了净表面电荷对体应力的影响。发现在这个尺寸范围内,适度的表面电荷可以在纳米颗粒中诱导出约100 MPa量级的显著体应力。