Vekemans X, Poux C, Goubet P M, Castric V
Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université Lille 1, Villeneuve d'Ascq Cedex, France.
J Evol Biol. 2014 Jul;27(7):1372-85. doi: 10.1111/jeb.12372. Epub 2014 Apr 12.
Evolutionary transitions between mating systems have occurred repetitively and independently in flowering plants. One of the most spectacular advances of the recent empirical literature in the field was the discovery of the underlying genetic machinery, which provides the opportunity to retrospectively document the scenario of the outcrossing to selfing transitions in a phylogenetic perspective. In this review, we explore the literature describing patterns of polymorphism and molecular evolution of the locus controlling self-incompatibility (S-locus) in selfing species of the Brassicaceae family in order to document the transition from outcrossing to selfing, a retrospective approach that we describe as the 'mating system genes approach'. The data point to strikingly contrasted scenarios of transition from outcrossing to selfing. We also perform original analyses of the fully sequenced genomes of four species showing self-compatibility, to compare the orthologous S-locus region with that of functional S-locus haplotypes. Phylogenetic analyses suggest that all species we investigated evolved independently towards loss of self-incompatibility, and in most cases almost intact sequences of either of the two S-locus genes suggest that these transitions occurred relatively recently. The S-locus region in Aethionema arabicum, representing the most basal lineage of Brassicaceae, showed unusual patterns so that our analysis could not determine whether self-incompatibility was lost secondarily, or evolved in the core Brassicaceae after the split with this basal lineage. Although the approach we detail can only be used when mating system genes have been identified in a clade, we suggest that its integration with phylogenetic and population genetic approaches should help determine the main routes of this predominant mating system shift in plants.
开花植物的交配系统之间反复且独立地发生了进化转变。该领域近期实证文献中最显著的进展之一是发现了潜在的遗传机制,这使得从系统发育的角度回顾性记录异交向自交转变的过程成为可能。在这篇综述中,我们探讨了描述十字花科自交物种中控制自交不亲和性(S位点)的基因座多态性和分子进化模式的文献,以记录从异交向自交的转变,我们将这种回顾性方法称为“交配系统基因方法”。数据指向了从异交向自交转变的截然不同的情景。我们还对四个表现出自交亲和性的物种的全基因组序列进行了原始分析,以将直系同源S位点区域与功能性S位点单倍型的区域进行比较。系统发育分析表明,我们研究的所有物种都独立进化出了自交不亲和性的丧失,并且在大多数情况下,两个S位点基因中任何一个的几乎完整序列表明这些转变相对较近才发生。代表十字花科最基部谱系的阿拉伯岩生庭荠的S位点区域呈现出异常模式,以至于我们的分析无法确定自交不亲和性是次生丧失的,还是在与这个基部谱系分裂后在十字花科核心类群中进化而来的。尽管我们详细介绍的方法仅在一个类群中已鉴定出交配系统基因时才能使用,但我们建议将其与系统发育和群体遗传学方法相结合,应有助于确定植物中这种主要交配系统转变的主要途径。