Belzung Catherine, Turiault Marc, Griebel Guy
INSERM 930, Université François Rabelais, UFR Sciences, Parc Grandmont, 37200 Tours, France.
Le Temps, Geneva, Switzerland.
Pharmacol Biochem Behav. 2014 Jul;122:144-57. doi: 10.1016/j.pbb.2014.04.002. Epub 2014 Apr 13.
In recent years, the development and extensive use of optogenetics resulted in impressive findings on the neurobiology of anxiety and depression in animals. Indeed, it permitted to depict precisely the role of specific cell populations in various brain areas, including the amygdala nuclei, the auditory cortex, the anterior cingulate, the hypothalamus, the hippocampus and the bed nucleus of stria terminalis in specific aspects of fear and anxiety behaviors. Moreover, these findings emphasized the involvement of projections from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex in eliciting depressive-like behaviors in stress-resilient mice or in inhibiting the expression of such behaviors in stress-vulnerable mice. Here we describe the optogenetic toolbox, including recent developments, and then review how the use of this technique contributed to dissect further the circuit underlying anxiety- and depression-like behaviors. We then point to some drawbacks of the current studies, particularly a) the sharp contrast between the sophistication of the optogenetic tools and the rudimentary aspect of the behavioral assays used, b) the fact that the studies were generally undertaken using normal rodents, that is animals that have not been subjected to experimental manipulations shifting them to a state relevant for pathologies and c) that the opportunity to explore the potential of these techniques to develop innovative therapeutics has been fully ignored yet. Finally, we discuss the point that these findings frequently ignore the complexity of the circuitry, as they focus only on a particular subpart of it. We conclude that users of this cutting edge technology could benefit from dialog between behavioral neuroscientists, psychiatrists and pharmacologists to further improve the impact of the findings.
近年来,光遗传学的发展与广泛应用在动物焦虑和抑郁的神经生物学研究方面取得了令人瞩目的成果。事实上,它使我们能够精确描绘特定细胞群在各个脑区中的作用,这些脑区包括杏仁核、听觉皮层、前扣带回、下丘脑、海马体以及终纹床核在恐惧和焦虑行为特定方面的作用。此外,这些研究结果强调了腹侧被盖区向伏隔核和内侧前额叶皮质的投射在应激适应型小鼠引发抑郁样行为或在应激易感性小鼠中抑制此类行为表达中的作用。在此,我们描述光遗传学工具集,包括近期的进展,然后综述该技术的应用如何有助于进一步剖析焦虑样和抑郁样行为背后的神经回路。接着,我们指出当前研究的一些不足之处,特别是:a) 光遗传学工具的复杂性与所使用行为学检测方法的原始性之间存在鲜明对比;b) 这些研究通常使用正常啮齿动物进行,即未经过实验操作使其转变为与疾病相关状态的动物;c) 探索这些技术开发创新疗法潜力的机会尚未得到充分重视。最后,我们讨论这些研究结果常常忽略神经回路复杂性这一问题,因为它们仅关注其中特定的子部分。我们得出结论,这项前沿技术的使用者可受益于行为神经科学家、精神科医生和药理学家之间的对话,以进一步提升研究结果的影响力。