Suppr超能文献

通过二氧化硫的电氧化生产氢气:确定基本限制因素。

H(2) production through electro-oxidation of SO(2): identifying the fundamental limitations.

作者信息

Kriek Roelof J, Rossmeisl Jan, Siahrostami Samira, Björketun Mårten E

机构信息

PGM Group, Research Focus Area for Chemical Resource Beneficiation (CRB), North-West University, Potchefstroom 2520, South Africa.

出版信息

Phys Chem Chem Phys. 2014 May 28;16(20):9572-9. doi: 10.1039/c4cp00705k.

Abstract

Sulphur dioxide (SO2), a known industrial pollutant and pulmonary irritant, is emitted to the atmosphere in excess of 120 Mt per annum. Great strides have been taken to reduce SO2 emissions, but with the growth of specifically China, and to a lesser extent India, it is on the rise again. The electrolysis of aqueous solutions of dissolved SO2 holds huge environmental potential in that SO2 is converted to sulphuric acid (H2SO4) and at the same time hydrogen gas is produced. A further benefit or incentive is that a sulphur depolarised electrolyser (SDE) operates at an applied potential that is about one volt lower than that of a regular water electrolyser. In taking this technology forward the greatest improvement to be made is in developing a suitable electrocatalyst, which is also the 'lowest hanging fruit' in that very limited research and development has been conducted on the electrocatalyst for this process. In this work, density functional theory is employed to model the electro-oxidation of SO2 on single crystal planes of the 4d and 5d transition metals. Two reaction mechanisms are considered, a HSO3 intermediate pathway and a SO3 intermediate pathway. The binding energies of all intermediates are found to scale with the surface reactivity (measured as the adsorption of OH). Irrespective of the pathway water needs to be activated and reduction of SO2 to elemental sulphur must be avoided. This requirement alone calls for an electrode potential of at least 0.7-0.8 V for all the investigated transition metals and thus challenges the proclaimed goal to operate the SDE at 0.6 V. A high chemical barrier is further found to severely limit the oxidation reaction on reactive metals. A much higher catalytic activity can be obtained on precious metals but at the cost of running the reaction at high overpotentials.

摘要

二氧化硫(SO₂)是一种已知的工业污染物和肺部刺激物,每年向大气中的排放量超过1.2亿吨。在减少SO₂排放方面已经取得了巨大进展,但随着特别是中国以及程度稍轻的印度的经济增长,其排放量又在上升。溶解态SO₂水溶液的电解具有巨大的环境潜力,因为SO₂可转化为硫酸(H₂SO₄),同时产生氢气。另一个好处或激励因素是,硫去极化电解槽(SDE)在比普通水电解槽低约1伏的外加电位下运行。要推进这项技术,最大的改进在于开发一种合适的电催化剂,这也是“低垂的果实”,因为针对该过程的电催化剂开展的研发工作非常有限。在这项工作中,采用密度泛函理论对4d和5d过渡金属单晶面上SO₂的电氧化进行建模。考虑了两种反应机制,即HSO₃中间途径和SO₃中间途径。发现所有中间体的结合能都与表面反应性(以OH的吸附量衡量)成比例。无论采用哪种途径,水都需要被活化,并且必须避免将SO₂还原为元素硫。仅这一要求就意味着所有研究的过渡金属的电极电位至少需要0.7 - 0.8伏,因此对宣称SDE在0.6伏下运行的目标构成了挑战。还发现一个高化学势垒会严重限制活性金属上的氧化反应。在贵金属上可以获得更高的催化活性,但代价是在高过电位下运行反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验