Suppr超能文献

控制自然黄铁矿氧化和酸性金属排水释放的生物地球化学过程。

Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

机构信息

State Key Laboratory of Biocontrol and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, PR China.

出版信息

Environ Sci Technol. 2014 May 20;48(10):5537-45. doi: 10.1021/es500154z. Epub 2014 Apr 29.

Abstract

The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.

摘要

硫化物矿物(主要是黄铁矿)的氧化溶解是导致大多数矿山酸性含金属排水的主要原因,这是一个全球性的重大环境问题。了解控制自然黄铁矿氧化的复杂生物地球化学过程不仅对于解决这个问题至关重要,而且对于理解硫化物矿物的工业生物浸出也至关重要。为此,我们进行了自然黄铁矿氧化溶解的模拟实验。微生物群落的 pyrosequencing 分析揭示了三个阶段的明显演替。在早期阶段,一个新提出的属(Tumebacillus,它可以使用硫代硫酸钠和亚硫酸盐作为唯一的电子供体)主导了微生物群落。在中期,Alicyclobacillus(早期最丰富的第五个属)成为最占优势的属,而 Tumebacillus 仍然排名第二。在最后阶段,微生物群落由 Ferroplasma(早期最丰富的第十个属)主导。我们的地球化学和矿物学分析表明,随着氧化的进行,可交换的重金属增加,并且在氧化序列的最后阶段形成了一些次生硫酸盐矿物(包括铁矾和镁铁copiapite)。此外,我们提出了一个控制硫化物矿物氧化的生物地球化学过程的综合模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验