Suppr超能文献

复杂网络中枢纽激活的信号传递。

Hub-activated signal transmission in complex networks.

作者信息

Jahnke Sven, Memmesheimer Raoul-Martin, Timme Marc

机构信息

Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany and Bernstein Center for Computational Neuroscience (BCCN), 37077 Göttingen, Germany and Institute for Nonlinear Dynamics, Fakultät für Physik, Georg-August-Universität Göttingen.

Department for Neuroinformatics, Donders Institute, Radboud University, Nijmegen, Netherlands.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):030701. doi: 10.1103/PhysRevE.89.030701. Epub 2014 Mar 10.

Abstract

A wide range of networked systems exhibit highly connected nodes (hubs) as prominent structural elements. The functional roles of hubs in the collective nonlinear dynamics of many such networks, however, are not well understood. Here, we propose that hubs in neural circuits may activate local signal transmission along sequences of specific subnetworks. Intriguingly, in contrast to previous suggestions of the functional roles of hubs, here, not the hubs themselves, but nonhub subnetworks transfer the signals. The core mechanism relies on hubs and nonhubs providing activating feedback to each other. It may, thus, induce the propagation of specific pulse and rate signals in neuronal and other communication networks.

摘要

各种各样的网络系统都表现出高度连接的节点(枢纽)作为突出的结构元素。然而,在许多这样的网络的集体非线性动力学中,枢纽的功能作用尚未得到很好的理解。在这里,我们提出神经回路中的枢纽可能会激活沿着特定子网络序列的局部信号传输。有趣的是,与之前关于枢纽功能作用的观点不同,在这里,传递信号的不是枢纽本身,而是非枢纽子网络。核心机制依赖于枢纽和非枢纽相互提供激活反馈。因此,它可能会在神经元和其他通信网络中诱导特定脉冲和速率信号的传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验