Braunstein Alfredo, Zecchina Riccardo
ICTP, Strada Costiera 11, I-34100 Trieste, Italy.
Phys Rev Lett. 2006 Jan 27;96(3):030201. doi: 10.1103/PhysRevLett.96.030201. Epub 2006 Jan 25.
We show that a message-passing process allows us to store in binary "material" synapses a number of random patterns which almost saturate the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g., [EQUATION: SEE TEXT]). The algorithm can be turned into an online-fault tolerant-learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.
我们表明,一种消息传递过程使我们能够在二进制“物质”突触中存储大量随机模式,这些模式几乎达到了信息理论界限。我们将学习算法应用于具有广泛不同连接拓扑且规模与生物系统相当的网络(例如,[方程:见文本])。该算法可转化为一种在线容错学习协议,在突触可塑性建模和构建神经形态器件方面可能具有重要意义。