Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
Mila, Montréal, QC, Canada.
J Physiol. 2023 Aug;601(15):3055-3069. doi: 10.1113/JP282758. Epub 2022 Oct 6.
Naturally log-scaled quantities abound in the nervous system. Distributions of these quantities have non-intuitive properties, which have implications for data analysis and the understanding of neural circuits. Here, we review the log-scaled statistics of neuronal spiking and the relevant analytical probability distributions. Recent work using log-scaling revealed that interspike intervals of forebrain neurons segregate into discrete modes reflecting spiking at different timescales and are each well-approximated by a gamma distribution. Each neuron spends most of the time in an irregular spiking 'ground state' with the longest intervals, which determines the mean firing rate of the neuron. Across the entire neuronal population, firing rates are log-scaled and well approximated by the gamma distribution, with a small number of highly active neurons and an overabundance of low rate neurons (the 'dark matter'). These results are intricately linked to a heterogeneous balanced operating regime, which confers upon neuronal circuits multiple computational advantages and has evolutionarily ancient origins.
神经系统中大量存在自然对数尺度的数量。这些数量的分布具有非直观的性质,这对数据分析和理解神经回路有影响。在这里,我们回顾了神经元尖峰的对数标度统计数据和相关的分析概率分布。最近使用对数标度的工作表明,前脑神经元的尖峰间隔可分为离散模式,反映了在不同时间尺度上的尖峰,并且每个模式都很好地由伽马分布近似。每个神经元大部分时间都处于不规则的尖峰“基础状态”,具有最长的间隔,这决定了神经元的平均发放率。在整个神经元群体中,发放率呈对数标度,并很好地由伽马分布近似,只有少数高度活跃的神经元和大量低速率的神经元(“暗物质”)。这些结果与异质平衡的工作状态密切相关,这种状态赋予了神经元电路多个计算优势,并具有古老的进化起源。