Suppr超能文献

使用多类型分支过程量化人畜共患病疫情中疾病暴发的统计数据。

Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics.

作者信息

Singh Sarabjeet, Schneider David J, Myers Christopher R

机构信息

Theoretical and Applied Mechanics, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.

Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, and Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032702. doi: 10.1103/PhysRevE.89.032702. Epub 2014 Mar 4.

Abstract

Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.

摘要

分支过程已被用作化学反应、生物生长过程以及(疾病、信息或时尚的)传播的模型。通过这种联系,这些看似不同的物理过程具有一些共同的普遍性,通过分析潜在的分支过程可以阐明这些普遍性。在这项工作中,我们专注于耦合分支过程,将其作为传染病从一个人群传播到另一个人群的模型。这种耦合爆发的一个极其重要的例子是从动物种群传播到人类的人畜共患感染。我们推导出了几个表征从动物到人类的首次溢出事件的统计量,包括溢出概率、人类感染的首次通过时间分布以及溢出时动物种群中的疾病患病率。这些量中的大随机波动会使推断溢出时系统的状态变得困难。然后,专注于人群中的疫情爆发,我们表征了大规模爆发的临界阈值、爆发规模的分布以及相关的标度律。这些都显示出对动物种群中基本再生数的强烈依赖性,并表明存在一个具有改变标度行为的新型多临界点。动物和人类感染动态的耦合具有至关重要的意义,最重要的是,即使在人传人处于亚临界状态时,也允许出现大规模人类疫情爆发的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验