Kämpf Kerstin, Kremmling Beke, Vogel Michael
Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032710. doi: 10.1103/PhysRevE.89.032710. Epub 2014 Mar 17.
Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.
我们使用多种氢-2核磁共振(NMR)方法,在宽广的温度和动力学范围内,以高角分辨率研究了全氘代藻蓝蛋白(CPC)在干燥和水合状态下的内部旋转动力学。通过分离甲基氘的氢-2 NMR信号,我们发现基本上所有主链氘都表现出高度受限的运动,其发生时间尺度快于微秒。当存在水合壳时,这种运动的幅度会增加,而在冷却时会减小,并在接近175 K时消失。我们得出结论,高度受限运动的消失标志着一个动力学转变,它与时间窗口无关且至关重要。这一结论得到了肌红蛋白和弹性蛋白蛋白质实验和计算研究结果的支持。特别是,基于分子动力学模拟的结果,我们认为蛋白质在动力学转变时高度受限运动的行为类似于液体在玻璃化转变时特征性二级弛豫的行为,即近乎恒定的损耗。此外,对全氘代CPC的氢-2 NMR研究表明,除了高度受限运动外,当温度和水合程度足够高时,一小部分主链片段表现出弱受限动力学。