Suppr超能文献

格子玻尔兹曼方法的扩散反弹条件和再填充算法。

Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method.

作者信息

Krithivasan Siddharth, Wahal Siddhant, Ansumali Santosh

机构信息

Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.

Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, 721302, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):033313. doi: 10.1103/PhysRevE.89.033313. Epub 2014 Mar 31.

Abstract

A solid-fluid boundary condition for the lattice Boltzmann (LB) method, which retains the simplicity of the bounce-back method and leads to positive definite populations similar to the diffusive boundary condition, is presented. As a refill algorithm, it is proposed that quasi-equilibrium distributions be used to model distributions at fluid nodes uncovered due to solid movement. The method is tested for flow past an impulsively started cylinder and demonstrates considerable enhancement in the accuracy of the unsteady force calculation at moderate and high Reynolds numbers. Furthermore, via simulations, we show that momentum exchange procedure used in LB to compute forces is not Galilean invariant. A modified momentum exchange procedure is proposed to reduce the errors due to violation of Galilean invariance.

摘要

提出了一种用于格子玻尔兹曼(LB)方法的固液边界条件,该条件保留了反弹法的简单性,并能产生与扩散边界条件类似的正定分布。作为一种重新填充算法,建议使用准平衡分布来模拟由于固体运动而露出的流体节点处的分布。该方法通过对突然启动的圆柱体绕流进行了测试,结果表明在中高雷诺数下,该方法能显著提高非定常力计算的精度。此外,通过模拟,我们发现LB中用于计算力的动量交换过程不是伽利略不变的。为此提出了一种改进的动量交换过程,以减少由于违反伽利略不变性而产生的误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验