Dai Zhaolai, Wu Zhenlong, Jia Sichao, Wu Guoyao
State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
Departments of Animal Science and of Medical Physiology, Texas A&M University, College Station, TX 77843, United States.
J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Aug 1;964:116-27. doi: 10.1016/j.jchromb.2014.03.025. Epub 2014 Mar 31.
Studies of protein nutrition and biochemistry require reliable methods for analysis of amino acid (AA) composition in polypeptides of animal tissues and foods. Proteins are hydrolyzed by 6M HCl (110°C for 24h), 4.2M NaOH (105°C for 20 h), or proteases. Analytical techniques that require high-performance liquid chromatography (HPLC) include pre-column derivatization with 4-chloro-7-nitrobenzofurazan, 9-fluorenyl methylchloroformate, phenylisothiocyanate, naphthalene-2,3-dicarboxaldehyde, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and o-phthaldialdehyde (OPA). OPA reacts with primary AA (except cysteine or cystine) in the presence of 2-mercaptoethanol or 3-mercaptopropionic acid to form a highly fluorescent adduct. OPA also reacts with 4-amino-1-butanol and 4-aminobutane-1,3-diol produced from oxidation of proline and 4-hydroxyproline, respectively, in the presence of chloramine-T plus sodium borohydride at 60°C, or with S-carboxymethyl-cysteine formed from cysteine and iodoacetic acid at 25°C. Fluorescence of OPA derivatives is monitored at excitation and emission wavelengths of 340 and 455 nm, respectively. Detection limits are 50 fmol for AA. This technique offers the following advantages: simple procedures for preparation of samples, reagents, and mobile-phase solutions; rapid pre-column formation of OPA-AA derivatives and their efficient separation at room temperature (e.g., 20-25°C); high sensitivity of detection; easy automation on the HPLC apparatus; few interfering side reactions; a stable chromatography baseline for accurate integration of peak areas; and rapid regeneration of guard and analytical columns. Thus, the OPA method provides a useful tool to determine AA composition in proteins of animal tissues (e.g., skeletal muscle, liver, intestine, placenta, brain, and body homogenates) and foods (e.g., milk, corn grain, meat, and soybean meal).
蛋白质营养与生物化学研究需要可靠的方法来分析动物组织和食物多肽中的氨基酸(AA)组成。蛋白质可通过6M盐酸(110°C加热24小时)、4.2M氢氧化钠(105°C加热20小时)或蛋白酶进行水解。需要高效液相色谱(HPLC)的分析技术包括用4-氯-7-硝基苯并呋咱、9-芴基甲基氯甲酸酯、苯异硫氰酸酯、萘-2,3-二甲醛、6-氨基喹啉-N-羟基琥珀酰亚胺基氨基甲酸酯和邻苯二甲醛(OPA)进行柱前衍生化。OPA在2-巯基乙醇或3-巯基丙酸存在下与伯氨基酸(半胱氨酸或胱氨酸除外)反应形成高荧光加合物。OPA还分别在60°C下与氯胺-T加硼氢化钠存在下脯氨酸和4-羟基脯氨酸氧化产生的4-氨基-1-丁醇和4-氨基丁烷-1,3-二醇反应,或在25°C下与半胱氨酸和碘乙酸形成的S-羧甲基半胱氨酸反应。OPA衍生物的荧光分别在激发波长340nm和发射波长455nm处进行监测。氨基酸的检测限为50飞摩尔。该技术具有以下优点:样品、试剂和流动相溶液的制备程序简单;OPA-氨基酸衍生物在柱前快速形成并在室温(如20-25°C)下有效分离;检测灵敏度高;易于在HPLC仪器上实现自动化;干扰副反应少;色谱基线稳定以准确积分峰面积;保护柱和分析柱快速再生。因此,OPA方法为测定动物组织(如骨骼肌、肝脏、肠道、胎盘、大脑和身体匀浆)和食物(如牛奶、玉米粒、肉类和豆粕)蛋白质中的氨基酸组成提供了一种有用的工具。