Suppr超能文献

传感器网络中的稀疏表示的分布式字典学习。

Distributed dictionary learning for sparse representation in sensor networks.

出版信息

IEEE Trans Image Process. 2014 Jun;23(6):2528-41. doi: 10.1109/TIP.2014.2316373. Epub 2014 Apr 10.

Abstract

This paper develops a distributed dictionary learning algorithm for sparse representation of the data distributed across nodes of sensor networks, where the sensitive or private data are stored or there is no fusion center or there exists a big data application. The main contributions of this paper are: 1) we decouple the combined dictionary atom update and nonzero coefficient revision procedure into two-stage operations to facilitate distributed computations, first updating the dictionary atom in terms of the eigenvalue decomposition of the sum of the residual (correlation) matrices across the nodes then implementing a local projection operation to obtain the related representation coefficients for each node; 2) we cast the aforementioned atom update problem as a set of decentralized optimization subproblems with consensus constraints. Then, we simplify the multiplier update for the symmetry undirected graphs in sensor networks and minimize the separable subproblems to attain the consistent estimates iteratively; and 3) dictionary atoms are typically constrained to be of unit norm in order to avoid the scaling ambiguity. We efficiently solve the resultant hidden convex subproblems by determining the optimal Lagrange multiplier. Some experiments are given to show that the proposed algorithm is an alternative distributed dictionary learning approach, and is suitable for the sensor network environment.

摘要

本文提出了一种分布式字典学习算法,用于对传感器网络节点分布的数据进行稀疏表示,其中敏感或私人数据被存储,或者没有融合中心,或者存在大数据应用。本文的主要贡献有:1)我们将联合字典原子更新和非零系数修正过程解耦为两个阶段的操作,以方便分布式计算,首先根据节点间残差(相关)矩阵的和的特征值分解更新字典原子,然后执行局部投影操作,以获得每个节点的相关表示系数;2)我们将上述原子更新问题建模为具有一致性约束的一组分散优化子问题。然后,我们简化了传感器网络中无向对称图的乘法器更新,并通过最小化可分离子问题来迭代地获得一致的估计;3)为了避免缩放模糊性,通常将字典原子约束为单位范数。我们通过确定最优拉格朗日乘子来有效地解决由此产生的隐藏凸子问题。给出了一些实验结果,表明所提出的算法是一种替代的分布式字典学习方法,适用于传感器网络环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验