Islam M Ahsanul, Waller Alison S, Hug Laura A, Provart Nicholas J, Edwards Elizabeth A, Mahadevan Radhakrishnan
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
PLoS One. 2014 Apr 14;9(4):e94808. doi: 10.1371/journal.pone.0094808. eCollection 2014.
Organohalide respiration, mediated by Dehalococcoides mccartyi, is a useful bioremediation process that transforms ground water pollutants and known human carcinogens such as trichloroethene and vinyl chloride into benign ethenes. Successful application of this process depends on the fundamental understanding of the respiration and metabolism of D. mccartyi. Reductive dehalogenases, encoded by rdhA genes of these anaerobic bacteria, exclusively catalyze organohalide respiration and drive metabolism. To better elucidate D. mccartyi metabolism and physiology, we analyzed available transcriptomic data for a pure isolate (Dehalococcoides mccartyi strain 195) and a mixed microbial consortium (KB-1) using the previously developed pan-genome-scale reconstructed metabolic network of D. mccartyi. The transcriptomic data, together with available proteomic data helped confirm transcription and expression of the majority genes in D. mccartyi genomes. A composite genome of two highly similar D. mccartyi strains (KB-1 Dhc) from the KB-1 metagenome sequence was constructed, and operon prediction was conducted for this composite genome and other single genomes. This operon analysis, together with the quality threshold clustering analysis of transcriptomic data helped generate experimentally testable hypotheses regarding the function of a number of hypothetical proteins and the poorly understood mechanism of energy conservation in D. mccartyi. We also identified functionally enriched important clusters (13 for strain 195 and 11 for KB-1 Dhc) of co-expressed metabolic genes using information from the reconstructed metabolic network. This analysis highlighted some metabolic genes and processes, including lipid metabolism, energy metabolism, and transport that potentially play important roles in organohalide respiration. Overall, this study shows the importance of an organism's metabolic reconstruction in analyzing various "omics" data to obtain improved understanding of the metabolism and physiology of the organism.
由麦氏脱卤球菌介导的有机卤化物呼吸作用是一种有用的生物修复过程,它能将地下水污染物以及已知的人类致癌物(如三氯乙烯和氯乙烯)转化为无害的乙烯。该过程的成功应用取决于对麦氏脱卤球菌呼吸作用和新陈代谢的深入理解。这些厌氧细菌的rdhA基因编码的还原脱卤酶专门催化有机卤化物呼吸作用并驱动新陈代谢。为了更好地阐明麦氏脱卤球菌的代谢和生理特性,我们使用先前构建的麦氏脱卤球菌泛基因组规模的重建代谢网络,分析了一个纯培养物(麦氏脱卤球菌菌株195)和一个混合微生物群落(KB-1)的现有转录组数据。转录组数据与现有的蛋白质组数据一起,有助于确认麦氏脱卤球菌基因组中大多数基因的转录和表达情况。我们构建了来自KB-1宏基因组序列的两个高度相似的麦氏脱卤球菌菌株(KB-1 Dhc)的复合基因组,并对该复合基因组和其他单个基因组进行了操纵子预测。这种操纵子分析,连同转录组数据的质量阈值聚类分析,有助于生成关于许多假设蛋白质的功能以及麦氏脱卤球菌中了解较少的能量守恒机制的可实验验证的假设。我们还利用重建代谢网络中的信息,确定了共表达代谢基因的功能富集重要簇(菌株195有13个,KB-1 Dhc有11个)。该分析突出了一些代谢基因和过程,包括脂质代谢、能量代谢和转运,它们可能在有机卤化物呼吸作用中发挥重要作用。总体而言,这项研究表明了生物体代谢重建在分析各种“组学”数据以更好地理解生物体的代谢和生理特性方面的重要性。