Dolinová Iva, Štrojsová Martina, Černík Miroslav, Němeček Jan, Macháčková Jiřina, Ševců Alena
Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
Environ Sci Pollut Res Int. 2017 May;24(15):13262-13283. doi: 10.1007/s11356-017-8867-y. Epub 2017 Apr 5.
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
氯乙烯污染对环境和人类健康都有严重的负面影响。这促使近年来开展了密集的修复活动,同时也对天然微生物群落将有毒氯乙烯降解为危害较小的化合物的功效进行了研究。氯乙烯的微生物降解可以通过以下方式进行:一是厌氧有机卤化物呼吸作用,其中氯乙烯作为电子受体;二是厌氧和好氧代谢降解,其中氯乙烯用作电子供体;三是厌氧和好氧共代谢降解,氯乙烯降解是在微生物代谢其他生长底物的过程中作为副产物发生的,没有能量或碳的益处。最近的研究集中在优化这些天然过程,使其成为有效的生物修复技术,特别强调:(a)参与脱氯微生物过程的细菌群体的多样性和作用;(b)检测与脱卤活性相关的细菌酶和基因。在这篇综述中,我们总结了适用于生物修复的氯乙烯细菌降解的不同机制,并提供了一份脱氯细菌清单。我们还提供了一份最新的引物总结,这些引物可用于检测在代谢或共代谢降解氯乙烯的厌氧和好氧细菌中的功能基因。