Suppr超能文献

利用超快光谱对纳米晶TiO₂上含逐层组装体的发色团/水氧化催化剂进行光物理表征。

Photophysical characterization of a chromophore/water oxidation catalyst containing a layer-by-layer assembly on nanocrystalline TiO2 using ultrafast spectroscopy.

作者信息

Bettis Stephanie E, Hanson Kenneth, Wang Li, Gish Melissa K, Concepcion Javier J, Fang Zhen, Meyer Thomas J, Papanikolas John M

机构信息

Department of Chemistry, University of North Carolina , CB 3290, Chapel Hill, North Carolina 27599, United States.

出版信息

J Phys Chem A. 2014 Nov 13;118(45):10301-8. doi: 10.1021/jp411139j. Epub 2014 May 5.

Abstract

Femtosecond transient absorption spectroscopy is used to characterize the first photoactivation step in a chromophore/water oxidation catalyst assembly formed through a "layer-by-layer" approach. Assemblies incorporating both chromophores and catalysts are central to the function of dye-sensitized photoelectrosynthesis cells (DSPECs) for generating solar fuels. The chromophore, Rua(II) = Ru(pbpy)2(bpy), and water oxidation catalyst, Rub(II)-OH2 = Ru(4,4'-(CH2PO3H2)2bpy)(Mebimpy)(H2O), where bpy = 2,2'-bipyridine, pbpy = 4,4'-(PO3H2)2bpy, and Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine), are arranged on nanocrystalline TiO2 via phosphonate-Zr(IV) coordination linkages. Analysis of the transient spectra of the assembly (denoted TiO2-Rua(II)-Zr-Rub(II)-OH2) reveal that photoexcitation initiates electron injection, which is then followed by the transfer of the oxidative equivalent from the chromophore to the catalyst with a rate of kET = 5.9 × 10(9) s(-1) (τ = 170 ps). While the assembly, TiO2-Rua(II)-Zr-Rub(II)-OH2, has a near-unit efficiency for transfer of the oxidative equivalent to the catalyst, the overall efficiency of the system is only 43% due to nonproductive photoexcitation of the catalyst and nonunit efficiency for electron injection. The modular nature of the layer-by-layer system allows for variation of the light-harvesting chromophore and water oxidation catalyst for future studies to increase the overall efficiency.

摘要

飞秒瞬态吸收光谱用于表征通过“逐层”方法形成的发色团/水氧化催化剂组件中的第一步光激活过程。同时包含发色团和催化剂的组件对于染料敏化光电解电池(DSPEC)生成太阳能燃料的功能至关重要。发色团Rua(II) = Ru(pbpy)2(bpy)和水氧化催化剂Rub(II)-OH2 = Ru(4,4'-(CH2PO3H2)2bpy)(Mebimpy)(H2O),其中bpy = 2,2'-联吡啶,pbpy = 4,4'-(PO3H2)2bpy,Mebimpy = 2,6-双(1-甲基苯并咪唑-2-基)吡啶,通过膦酸酯-Zr(IV)配位键排列在纳米晶TiO2上。对该组件(表示为TiO2-Rua(II)-Zr-Rub(II)-OH2)的瞬态光谱分析表明,光激发引发电子注入,随后氧化当量以kET = 5.9 × 10(9) s(-1)(τ = 170 ps)的速率从发色团转移到催化剂。虽然组件TiO2-Rua(II)-Zr-Rub(II)-OH2将氧化当量转移到催化剂的效率接近单位效率,但由于催化剂的非生产性光激发和电子注入的非单位效率,该系统的整体效率仅为43%。逐层系统的模块化性质允许改变光捕获发色团和水氧化催化剂,以便未来的研究提高整体效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验