School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom.
Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2107939118.
Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme-heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of We observed rates of heme-to-heme electron transfer on the order of 10 s (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser-Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.
蛋白质通过一系列氧化还原辅助因子沿电子转移实现高效的能量存储和转换。多血红素细胞色素就是一个显著的例子。这些蛋白质在数纳米到超过 10 μm 的距离尺度上传递电子,在此过程中,它们将细胞代谢与包括电极在内的细胞外氧化还原伴侣偶联起来。在这里,我们报告了泵浦探针光谱学,该技术为这类迷人的蛋白质中血红素-血红素电子转移的固有速率提供了直接的测量方法。我们的研究利用了在 decaheme 细胞外 MtrC 蛋白的一个特定位置引入的具有独特光谱特征的 His/Met 配位血红素来进行。我们观察到血红素到血红素电子转移的速率在 10 s 的量级上(3.7 到 4.3 Å 边缘到边缘的距离),与基于密度泛函和分子动力学计算的预测非常吻合。这些速率是生物学中报道的最高的基态电子转移速率之一。然而,有些速率比 Moser-Dutton 标尺低 2 到 3 个数量级,因为在这些短距离上的电子转移是通过空间进行的,因此与通常在较长距离上通过蛋白质的隧道化情景相比,隧道化的势垒更高。此外,我们表明,His/Met 配位血红素形成了一个电子汇,在 100 μs 的时间尺度上稳定了电荷分离态。这一特性可以在未来的多血红素细胞色素设计中被利用,作为多功能光合生物混合组件的组成部分。