Xu Shiliyang, Grullon Sean, Ge Kai, Peng Weiqun
Department of Physics, The George Washington University, Corcoran Hall, Room 105, 725 21st Street NW, Washington, DC, 20052, USA.
Methods Mol Biol. 2014;1150:97-111. doi: 10.1007/978-1-4939-0512-6_5.
Chromatin states are the key to embryonic stem cell pluripotency and differentiation. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-Seq) is increasingly used to map chromatin states and to functionally annotate the genome. Many ChIP-Seq profiles, especially those of histone methylations, are noisy and diffuse. Here we describe SICER (Zang et al., Bioinformatics 25(15):1952-1958, 2009), an algorithm specifically designed to identify disperse ChIP-enriched regions with high sensitivity and specificity. This algorithm has found a lot of applications in epigenomic studies. In this Chapter, we will demonstrate in detail how to run SICER to delineate ChIP-enriched regions and assess their statistical significance, and to identify regions of differential enrichment when two chromatin states are compared.
染色质状态是胚胎干细胞多能性和分化的关键。染色质免疫沉淀(ChIP)结合高通量测序(ChIP-Seq)越来越多地用于绘制染色质状态并对基因组进行功能注释。许多ChIP-Seq图谱,尤其是组蛋白甲基化的图谱,都存在噪声且分散。在此我们描述SICER(Zang等人,《生物信息学》25(15):1952 - 1958,2009年),这是一种专门设计用于以高灵敏度和特异性识别分散的ChIP富集区域的算法。该算法已在表观基因组学研究中得到广泛应用。在本章中,我们将详细演示如何运行SICER来描绘ChIP富集区域并评估其统计显著性,以及在比较两种染色质状态时识别差异富集区域。