Suppr超能文献

Chrom-Sig:通过信号处理方法对一维基因组图谱进行去噪

Chrom-Sig: de-noising 1-dimensional genomic profiles by signal processing methods.

作者信息

Gupta Nandita J, Apell Zachary, Kim Minji

机构信息

Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, USA.

Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

出版信息

bioRxiv. 2025 Aug 15:2025.08.12.670000. doi: 10.1101/2025.08.12.670000.

Abstract

MOTIVATION

Modern genomic research is driven by next-generation sequencing experiments such as ChIP-seq, CUT&Tag, and CUT&RUN that generate coverage files for transcription factor binding, as well as ATAC-seq that yield coverage files for chromatin accessibility. Due to the inherent technical noise present in the experimental protocols, researchers need statistically rigorous and computational efficient methods to extract true biological signal from a mixture of signal and noise. However, existing approaches are often computationally demanding or require input or spike-in controls.

RESULTS

We developed Chrom-Sig, a Python package to quickly de-noise 1-dimensional genomic coverage tracks by computing the empirical null distribution without prior assumptions or experimental controls. When tested on 19 ChIP-seq, CUT&RUN, ATAC-seq, snATAC-seq datasets, Chrom-Sig can effectively decompose the data into signal and noise. Notably, Chrom-Sig performs de-noising and peak calling in 1-2 hours using around 20 GB of memory. The de-noised signal corroborates with biologically meaningful results: CTCF CUT&RUN data retained a higher percentage of peaks overlapping CTCF binding motifs and ATAC-seq and RNA Polymerase II data resulted in enhancers and promoters. We envision Chrom-Sig to be a highly versatile and general tool for current and future genomic technologies.

AVAILABILITY

Chrom-Sig is publicly available at https://github.com/minjikimlab/chromsig under the MIT license.

摘要

动机

现代基因组研究由诸如ChIP-seq、CUT&Tag和CUT&RUN等新一代测序实验驱动,这些实验生成转录因子结合的覆盖文件,以及产生染色质可及性覆盖文件的ATAC-seq。由于实验方案中存在固有的技术噪声,研究人员需要统计严格且计算高效的方法,以便从信号与噪声的混合中提取真实的生物信号。然而,现有方法通常计算要求高,或者需要输入或掺入对照。

结果

我们开发了Chrom-Sig,这是一个Python软件包,通过计算经验零分布来快速对一维基因组覆盖轨迹进行去噪,无需先验假设或实验对照。在19个ChIP-seq、CUT&RUN、ATAC-seq、snATAC-seq数据集上进行测试时,Chrom-Sig可以有效地将数据分解为信号和噪声。值得注意的是,Chrom-Sig使用约20GB内存,在1 - 2小时内完成去噪和峰检测。去噪后的信号与生物学上有意义的结果相符:CTCF CUT&RUN数据保留了更高比例的与CTCF结合基序重叠的峰,ATAC-seq和RNA聚合酶II数据产生了增强子和启动子。我们设想Chrom-Sig将成为当前和未来基因组技术的一种高度通用的工具。

可用性

Chrom-Sig在https://github.com/minjikimlab/chromsig上公开可用,遵循MIT许可。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c2/12363972/b6b0b14d6125/nihpp-2025.08.12.670000v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验