Suppr超能文献

评估基因型错误对罕见变异关联检验的影响。

Evaluating the impact of genotype errors on rare variant tests of association.

机构信息

Department of Mathematics, Carleton College Northfield, MN, USA.

Department of Applied Mathematics, Brown University Providence, RI, USA.

出版信息

Front Genet. 2014 Apr 1;5:62. doi: 10.3389/fgene.2014.00062. eCollection 2014.

Abstract

The new class of rare variant tests has usually been evaluated assuming perfect genotype information. In reality, rare variant genotypes may be incorrect, and so rare variant tests should be robust to imperfect data. Errors and uncertainty in SNP genotyping are already known to dramatically impact statistical power for single marker tests on common variants and, in some cases, inflate the type I error rate. Recent results show that uncertainty in genotype calls derived from sequencing reads are dependent on several factors, including read depth, calling algorithm, number of alleles present in the sample, and the frequency at which an allele segregates in the population. We have recently proposed a general framework for the evaluation and investigation of rare variant tests of association, classifying most rare variant tests into one of two broad categories (length or joint tests). We use this framework to relate factors affecting genotype uncertainty to the power and type I error rate of rare variant tests. We find that non-differential genotype errors (an error process that occurs independent of phenotype) decrease power, with larger decreases for extremely rare variants, and for the common homozygote to heterozygote error. Differential genotype errors (an error process that is associated with phenotype status), lead to inflated type I error rates which are more likely to occur at sites with more common homozygote to heterozygote errors than vice versa. Finally, our work suggests that certain rare variant tests and study designs may be more robust to the inclusion of genotype errors. Further work is needed to directly integrate genotype calling algorithm decisions, study costs and test statistic choices to provide comprehensive design and analysis advice which appropriately accounts for the impact of genotype errors.

摘要

新的稀有变异测试类别通常是在假设基因型信息完美的情况下进行评估的。但实际上,稀有变异的基因型可能是不正确的,因此稀有变异测试应该能够应对不完美的数据。SNP 基因分型中的错误和不确定性已经被证明会极大地影响常见变异的单标记测试的统计效力,并且在某些情况下会使第一类错误率膨胀。最近的结果表明,来自测序读取的基因型调用的不确定性取决于几个因素,包括读取深度、调用算法、样本中存在的等位基因数量以及等位基因在人群中的分离频率。我们最近提出了一种用于评估和研究关联的稀有变异测试的通用框架,将大多数稀有变异测试分为两类(长度或联合测试)。我们使用这个框架将影响基因型不确定性的因素与稀有变异测试的效力和第一类错误率联系起来。我们发现,非差分基因型错误(一种独立于表型发生的错误过程)会降低效力,对于极其罕见的变异和常见的纯合子到杂合子错误,降低幅度更大。差分基因型错误(一种与表型状态相关的错误过程)会导致第一类错误率膨胀,这种情况更可能发生在常见的纯合子到杂合子错误比反之更多的位点上。最后,我们的工作表明,某些稀有变异测试和研究设计可能对包含基因型错误更具鲁棒性。需要进一步的工作来直接整合基因型调用算法决策、研究成本和测试统计选择,以提供全面的设计和分析建议,适当考虑基因型错误的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bc1/3978329/80848a3442c7/fgene-05-00062-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验