Brogden David W, Turov Yevgeniya, Nippe Michael, Li Manni Giovanni, Hillard Elizabeth A, Clérac Rodolphe, Gagliardi Laura, Berry John F
Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.
Inorg Chem. 2014 May 5;53(9):4777-90. doi: 10.1021/ic5007204. Epub 2014 Apr 21.
Oxidation of quadruply bonded Cr2(dpa)4, Mo2(dpa)4, MoW(dpa)4, and W2(dpa)4 (dpa = 2,2'-dipyridylamido) with 2 equiv of silver(I) triflate or ferrocenium triflate results in the formation of the two-electron-oxidized products Cr2(dpa)4 (1), Mo2(dpa)4 (2), MoW(dpa)4 (3), and W2(dpa)4 (4). Additional two-electron oxidation and oxygen atom transfer by m-chloroperoxybenzoic acid results in the formation of the corresponding metal-oxo compounds Mo2O(dpa)4 (5), WMoO(dpa)4 (6), and W2O(dpa)4 (7), which feature an unusual linear M···M≡O structure. Crystallographic studies of the two-electron-oxidized products 2, 3, and 4, which have the appropriate number of orbitals and electrons to form metal-metal triple bonds, show bond distances much longer (by >0.5 Å) than those in established triply bonded compounds, but these compounds are nonetheless diamagnetic. In contrast, the Cr-Cr bond is completely severed in 1, and the resulting two isolated Cr(3+) magnetic centers couple antiferromagnetically with J/kB= -108(3) K [-75(2) cm(-1)], as determined by modeling of the temperature dependence of the magnetic susceptibility. Density functional theory (DFT) and multiconfigurational methods (CASSCF/CASPT2) provide support for "stretched" and weak metal-metal triple bonds in 2, 3, and 4. The metal-metal distances in the metal-oxo compounds 5, 6, and 7 are elongated beyond the single-bond covalent radii of the metal atoms. DFT and CASSCF/CASPT2 calculations suggest that the metal atoms have minimal interaction; the electronic structure of these complexes is used to rationalize their multielectron redox reactivity.
用2当量的三氟甲磺酸银或三氟甲磺酸二茂铁氧化四重键合的Cr2(dpa)4、Mo2(dpa)4、MoW(dpa)4和W2(dpa)4(dpa = 2,2'-联吡啶酰胺),会生成双电子氧化产物Cr2(dpa)4(1)、Mo2(dpa)4(2)、MoW(dpa)4(3)和W2(dpa)4(4)。间氯过氧苯甲酸进行的额外双电子氧化和氧原子转移导致形成相应的金属氧代化合物Mo2O(dpa)4(5)、WMoO(dpa)4(6)和W2O(dpa)4(7),它们具有不寻常的线性M···M≡O结构。对具有形成金属 - 金属三键所需适当轨道数和电子数的双电子氧化产物2、3和4进行的晶体学研究表明,其键长比已确定的三键化合物中的键长长得多(>0.5 Å),但这些化合物仍是抗磁性的。相比之下,1中的Cr - Cr键完全断裂,通过对磁化率温度依赖性的建模确定,生成的两个孤立Cr(3+)磁性中心以J/kB = -108(3) K [-75(2) cm(-1)]反铁磁耦合。密度泛函理论(DFT)和多组态方法(CASSCF/CASPT2)为2、3和4中“拉长”且较弱的金属 - 金属三键提供了支持。金属氧代化合物5、6和7中的金属 - 金属距离拉长超过了金属原子单键共价半径。DFT和CASSCF/CASPT2计算表明金属原子间相互作用极小;这些配合物的电子结构用于合理化它们的多电子氧化还原反应活性。