Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, USA.
J Pharmacol Sci. 2014;125(1):6-38. doi: 10.1254/jphs.13r04cr. Epub 2014 Apr 19.
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent "coupled-clock" theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age.
心脏起搏是一种复杂的现象,目前仍不完全清楚。与实验研究一起,数值建模一直被传统上用于在该研究领域获得机械洞察力。本综述总结了心脏起搏器的数值建模现状,包括解决当前悖论和争议的方法。具体来说,我们讨论了需要进行现实建模以考虑细胞内和细胞膜过程的对称重要性(在最近的“偶联时钟”理论中)。复杂起搏器系统模型的有前途的未来发展包括引入局部钙控制、线粒体功能以及蛋白磷酸化和 cAMP 产生的生化调节。现代数值和理论方法,如模型扩展群体中的多参数敏感性分析和分岔分析,对于定义描述耦合时钟起搏器细胞系统稳健但同时灵活运行的最现实参数也很重要。探索心脏起搏器功能的系统方法将指导新疗法的发展,例如生物起搏器治疗随着年龄增长而变得越来越普遍的心脏起搏器功能不足。