Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland.
Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel.
Biophys J. 2018 Mar 13;114(5):1176-1189. doi: 10.1016/j.bpj.2017.12.043.
Recent data suggest that cardiac pacemaker cell function is determined by numerous time-, voltage-, and Ca-dependent interactions of cell membrane electrogenic proteins (M-clock) and intracellular Ca cycling proteins (Ca-clock), forming a coupled-clock system. Many aspects of the coupled-clock system, however, remain underexplored. The key players of the system are Ca release channels (ryanodine receptors), generating local Ca releases (LCRs) from sarcoplasmic reticulum, electrogenic Na/Ca exchanger (NCX) current, and L-type Ca current (I). We combined numerical model simulations with experimental simultaneous recordings of action potentials (APs) and Ca to gain further insight into the complex interactions within the system. Our simulations revealed a positive feedback mechanism, dubbed AP ignition, which accelerates the diastolic depolarization (DD) to reach AP threshold. The ignition phase begins when LCRs begin to occur and the magnitude of inward NCX current begins to increase. The NCX current, together with funny current and T-type Ca current accelerates DD, bringing the membrane potential to I activation threshold. During the ignition phase, I-mediated Ca influx generates more LCRs via Ca-induced Ca release that further activates inward NCX current, creating a positive feedback. Simultaneous recordings of membrane potential and confocal Ca images support the model prediction of the positive feedback among LCRs and I, as diastolic LCRs begin to occur below and continue within the voltage range of I activation. The ignition phase onset (identified within the fine DD structure) begins when DD starts to notably accelerate (∼0.15 V/s) above the recording noise. Moreover, the timing of the ignition onset closely predicted the duration of each AP cycle in the basal state, in the presence of autonomic receptor stimulation, and in response to specific inhibition of either the M-clock or Ca-clock, thus indicating general importance of the new coupling mechanism for regulation of the pacemaker cell cycle duration, and ultimately the heart rate.
最近的数据表明,心脏起搏器细胞的功能是由细胞膜电生成蛋白(M-clock)和细胞内 Ca 循环蛋白(Ca-clock)的许多时间、电压和 Ca 依赖性相互作用决定的,形成一个偶联时钟系统。然而,偶联时钟系统的许多方面仍未得到充分探索。该系统的关键参与者是钙释放通道(兰尼碱受体),从肌浆网产生局部钙释放(LCR),电生钠钙交换器(NCX)电流和 L 型钙电流(I)。我们结合数值模型模拟和动作电位(AP)和 Ca 的实验同步记录,以进一步深入了解系统内的复杂相互作用。我们的模拟揭示了一种正反馈机制,称为 AP 点火,它加速了舒张去极化(DD)以达到 AP 阈值。点火阶段始于 LCR 开始发生并且内向 NCX 电流的幅度开始增加时开始。NCX 电流与有趣电流和 T 型钙电流一起加速 DD,使膜电位达到 I 激活阈值。在点火阶段,I 介导的 Ca 内流通过 Ca 诱导的 Ca 释放产生更多的 LCR,进一步激活内向 NCX 电流,产生正反馈。膜电位和共聚焦 Ca 图像的同步记录支持 LCR 和 I 之间存在正反馈的模型预测,因为舒张 LCR 开始发生在 I 激活的电压范围以下并持续存在。点火阶段的开始(在精细的 DD 结构中识别)发生在 DD 开始以高于记录噪声的显著速度(约 0.15 V/s)显著加速时。此外,点火起始的时间与在基础状态、自主受体刺激存在下以及对 M-clock 或 Ca-clock 的特定抑制的每个 AP 周期的持续时间密切相关,因此表明新的耦合机制对于调节起搏器细胞周期持续时间,最终心率具有重要意义。