Suppr超能文献

一种基于集合覆盖的周期性车辆路径问题启发式算法。

A set-covering based heuristic algorithm for the periodic vehicle routing problem.

作者信息

Cacchiani V, Hemmelmayr V C, Tricoire F

机构信息

DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna, Austria ; Institute for Transport and Logistics Management, WU, Vienna University of Economics and Business, Nordbergstraße 15, 1090 Vienna, Austria.

出版信息

Discrete Appl Math. 2014 Jan 30;163(Pt 1):53-64. doi: 10.1016/j.dam.2012.08.032.

Abstract

We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems.

摘要

我们提出了一种用于混合整数线性规划的混合优化算法,该算法嵌入了启发式和精确组件。为了验证它,我们将周期性车辆路径问题(PVRP)作为案例研究。这个问题包括为给定规划期内的每一天确定一组成本最低的路线,其约束条件为:每个客户必须被访问规定的次数(从一组有效的日组合中选择),每次必须接收所需数量的产品,并且每天的路线数量(每条路线都要符合车辆的容量)不超过可用车辆的总数。这是著名的车辆路径问题(VRP)的一个推广。我们的算法基于该问题的一个类似集合覆盖的整数线性规划公式的线性规划(LP)松弛,并带有附加约束。LP松弛通过列生成来求解,其中列由迭代局部搜索算法启发式地生成。整个求解方法利用了LP解,并应用列的固定和释放技术作为局部搜索,利用禁忌表来避免循环。我们展示了所提算法在文献基准实例上的结果,并将其与现有最优算法进行比较,证明了我们的方法在产生高质量解方面的有效性。此外,我们报告了在Pacheco等人(2011年)[24]中引入的PVRP实际实例以及周期性旅行商问题(PTSP)基准实例上的结果,也证明了所提算法在这些实例上的有效性。最后,我们报告了针对所有测试问题找到的新的已知最优解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1475/3990422/743ec808b860/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验